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Spatial Sensitivity

• Which image has the greatest distortion with respect to the 
template?

in Figure 6, which is typical, the magnitudes of kurtosis are
photometric 9 geometric 9 noise.
Nevertheless, it would be prudent to test whether the

statistics of the difference image, whose first-order
properties are reflected in the pixel-difference histogram,
is the reason for the relatively high geometric trans-
formation thresholds. An anonymous reviewer suggested a
way of doing this.
Take a baseline image IB and transform it, say by

rotation, to image IT. Call the difference between these
two images ID = IT j IB. Any difference between two
images (even a difference caused by an affine trans-
formation) can be described in terms of this difference
image. In the third control experiment, we compare the
thresholds for detecting the increment versus the decre-
ment of this difference image. That is we compare the
thresholds for

IT versus IB

and IC versus IB;
ð5Þ

where IT is the incremental and IC the control, decre-
mental image, defined as

IT ¼ IB þ ID

IC ¼ IB j ID:
ð6Þ

Given that

ID ¼ IT j IB; ð7Þ

the control image can also be written as

IC ¼ IB j ðIT j IBÞ

¼ 2IB j IT:
ð8Þ

Figure 7 provides an example of the two images that are
created by adding and subtracting the difference image.
The difference image in the two cases is identical. We can
therefore ask whether an increment (which corresponds to

Figure 5. The top image has been transformed into the bottom two images by (left) the addition of white noise and (right) by stretching the
image horizontally. The Euclidean distance between the top and each of the two transformed images is identical.
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Spatial Sensitivity
adding white noise, the one on the right by stretching the
image horizontally. The amount of transformation how-
ever is identical in terms of Euclidean distance. While it is
easy to see the changes in the left image, the changes in
the right image can only be seen with careful scrutiny.
Why are the geometric transformations so much more

difficult to detect compared to added noise? One possi-
bility is that the answer lies in the shape of the histogram
of pixel differences between the original and transformed
images. The pixel-difference histogram captures the first-
order (point-wise) statistical differences between two
images. Figure 6 shows the pixel-difference histograms
for an image transformed by the same Euclidean distance
in one of three ways: translation, brightening, and addition
of Gaussian noise. The pixel-difference histogram is by
definition a Gaussian for the added Gaussian noise con-
dition. For translation it is more kurtotic, and for brightening
it is a single-point function (all pixels are incremented by the
same value) making it highly kurtotic. The marked differ-
ence in the shape of these pixel-difference histograms for the
various transformations raises the possibility that pixel
histogram shape is a factor determining thresholds. At face
value, however, it would seem unlikely that kurtosis is the
critical statistic since the relative magnitudes of thresholds
are geometric 9 photometric 9 noise, whereas for the image

Figure 4. Euclidean distance E thresholds for all types of transformation from both experiments and for both subjects. Results from
Experiment 1 are shown in green, Experiment 2 in red. H = horizontal, V = vertical. Subject KW top, SG bottom. Viewing distance was 1 m.

Figure 3. Example psychometric functions for KWs Gaussian
noise (red symbols) and vertical translation (green squares)
conditions from Experiment 1. The proportion of correctly detected
transformations is plotted against the log Euclidean distance
between the transformed and untransformed image. Error bars
are binomial standard deviations. Continuous lines are best fitting
logistic functions. The horizontal black line shows the 75% correct
level, and the vertical dashed lines show the threshold log
Euclidean distance for each condition.
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Handling Geometric Distortion
• As pointed out in seminal work by Berg and Malik 

(CVPR’01) the effectiveness of SSD will degrade with 
significant viewpoint change.  

• Two options to match local image patches:-
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
L

,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫
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The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1
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close to linear with respect to the change in dilation.
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Handling Geometric Distortion
• As pointed out in seminal work by Berg and Malik 

(CVPR’01) the effectiveness of SSD will degrade with 
significant viewpoint change.  

• Two options to match local image patches:-
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We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Handling Geometric Distortion
• As pointed out in seminal work by Berg and Malik 

(CVPR’01) the effectiveness of SSD will degrade with 
significant viewpoint change.  

• Two options to match local image patches:- 
1. simultaneously estimate the distortion and position of matching patch
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of T (x). The implications of this definition are covered be-
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becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:
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blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
L

,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
L

,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Handling Geometric Distortion
• As pointed out in seminal work by Berg and Malik 

(CVPR’01) the effectiveness of SSD will degrade with 
significant viewpoint change.  

• Two options to match local image patches:- 
1. simultaneously estimate the distortion and position of matching patch

7

0 0

Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
L

,Lax0](x)

x00 ax00

Lax0ax0
L

L2
1 L20

1

1

Lx0x0
L

x0
L

Lx0ax0
L

Lax0

Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
L

,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
L

,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.

3



Handling Geometric Distortion
• As pointed out in seminal work by Berg and Malik 

(CVPR’01) the effectiveness of SSD will degrade with 
significant viewpoint and/or illumination change.  

• Two options to match patches:- 
1. simultaneously estimate the distortion and position of matching patch. 
2. to “blur” the template window performing matching coarse-to-fine.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
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,L]
I(tx)dt
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and similarly the geometric blur for J is
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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• As pointed out in seminal work by Berg and Malik 

(CVPR’01) the effectiveness of SSD will degrade with 
significant viewpoint and/or illumination change.  

• Two options to match patches:- 
1. simultaneously estimate the distortion and position of matching patch. 
2. to “blur” the template window performing matching coarse-to-fine.
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after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
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,L]
I(tx)dt
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
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,L]
I(tx)dt
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,Lx0](x)

and similarly the geometric blur for J is
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
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,L]
I(tx)dt
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,Lx0](x)

and similarly the geometric blur for J is
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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(CVPR’01) the effectiveness of SSD will degrade with 
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1. simultaneously estimate the distortion and position of matching patch. 
2. to “blur” the template window performing matching coarse-to-fine.

8

0 0
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after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
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,L]
I(tx)dt
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and similarly the geometric blur for J is
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
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L
, L],
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GI(x) =
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dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫
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GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
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(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.
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δax0(x) be a geometric distortion of I , where the distortion
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dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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,Lax0](x)
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
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lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.

3
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Handling Geometric Distortion
• As pointed out in seminal work by Berg and Malik 

(CVPR’01) the effectiveness of SSD will degrade with 
significant viewpoint and/or illumination change.  

• Two options to match patches:- 
1. simultaneously estimate the distortion and position of matching patch. 
2. to “blur” the template window performing matching coarse-to-fine.
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signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.

3

0 0

Figure 1: Top row: The right is a dilated version of the
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blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt

= χ[ x0
L

,Lx0](x)

and similarly the geometric blur for J is

GJ(x) = χ[ ax0
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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signal on the left. Second row: the signals after geometric
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after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
L

,L]
I(tx)dt
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,Lx0](x)

and similarly the geometric blur for J is
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Figure 1: Top row: The right is a dilated version of the
signal on the left. Second row: the signals after geometric
blur. Third row: The proportional overlap of the signals
after geometric blur is 1 minus a term proportional to the
dilation, unlike uniform blur (second to bottom row) where
the proportional overlap is dependent on the signal and the
dilation in a highly non-linear manner.

2.1. Definition of Geometric Blur
The geometric blur GI(x) of a signal I(x) over coordinate
x is defined to be:

GI(x) =

∫

T∈T
I(T (x))dT

Where the geometric distortion T is contained in some
set T of bounded transforms. We will usually restrict T to
be a subset of linear transformations and write Tx in place
of T (x). The implications of this definition are covered be-
low and at the end of the section we discuss computation.
The measure for the integral is discussed later.

2.2. Linearity in 1D
As a concrete example, consider the signal I(x) = δx0(x)
for some x0 > 0 in 1D, as shown in Figure 2. Let J(x) =
δax0(x) be a geometric distortion of I , where the distortion
is a scale by a factor of a > 0. Now consider the geometric
blur of these two signals for scaling transforms t ∈ [ 1

L
, L],

for some L > 1. This gives us the geometric blur GI for I
as

GI(x) =

∫

t∈[ 1
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,L]
I(tx)dt

= χ[ x0
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and similarly the geometric blur for J is
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Figure 2: Top Row: A signal of a single impulse and a
dilated version of the same signal, Second Row: The geo-
metric blur of each signal, Third Row: Overlay of the two
signals after geometric blur. The shaded region contributes
to the correlation at zero offset. Fourth Row: Relative over-
lap as a function of dilation.

We now define the first of two normalizations for the
comparison of two geometric blurs:

C̃(GI , GJ) =
1

||GI ||1

∫

x

GI(x)GJ(x)dx

Using the example above we have:

C̃(GI , GJ) =

{

max(1 − a−1
L2−1 , 0) 1 ≤ a

max(1 + a−1
1− 1

L2
, 0) 0 ≤ a ≤ 1 (1)

The important fact here is that C̃(GI , GJ) is indepen-
dent of x0. Furthermore C̃(GI , GJ) falls off linearly in the
change of the dilation a, as shown in Figure 2.
We can extend the above example to signals of the form

I(x) =
∑

i δxi
(x) if the xi are sufficiently separated so that

the geometric blurs
∫

t
δxi

(tx) are disjoint. As the signal
becomes dense, or the range of t becomes large, the blurs
overlap, and linearity no longer holds. However until the
signal becomes very dense the behavior is still somewhat
linear.
At this point we define the second normalization for

comparisons of geometric blur:

Ĉ(GI , GJ) =
1

||GI ||2||GJ ||2

∫

x

GI(x)GJ(x)dx

This normalization gives better results for signals that are
somewhat dense (see Figure 3). Unlike C̃, Ĉ does not fall
off linearly in the change of dilation, but it is still indepen-
dent of x0 in the example above, and in practice has fall-off
close to linear with respect to the change in dilation.
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Option 2 is attractive, low computational cost!



Sparseness and Positiveness

• Blurring only works if the signals being matched are 
sparse and positive.  

• Unfortunately natural images are neither.  
• Combination of oriented filter banks and rectification can 

remedy this problem with little loss in performance. 
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3.1 Results on Synthetic Data

We present results on synthetic data that demonstrates the
behavior and capability of geometric blur.
In order to see that geometric blur helps in discrimina-

tion we performed a discrimination task using 200 test pat-
terns. Rotated versions of the test patterns were compared
to the original test patterns. Both the original test patterns
and the rotated versions were blurred by either geometric
blur or a uniform Gaussian blur. For geometric blur, a spa-
tially varying kernel Kx(y) = Gα|x|(y), where Gσ(y) is a
Gaussian with standard deviation σ, was applied. For uni-
form Gaussian blur the kernel Gσ(y) was applied. Then
each blurred rotated pattern was compared to all the blurred
original patterns using normalized correlation and matched
to the closest one. The test patterns used in this example
were random with each pixel in a disc of radius 25 pix-
els being turned on with probability 5%. Figures 5 and 6
show the mis-classification rate as the amount of blur, α or
σ is varied. Geometric blur has much better discriminative
power, and manages to be general enough to handle large
rotation somewhat more effectively than uniform blur.
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Figure 5: Identifying 200 random test images after rotation,
using various amounts (α) of geometric blur.
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Figure 6: Identifying 200 random test images after rotation,
using various amounts (σ) of uniform Gaussian blur.

3.2. Pre-processing to obtain Sparse Signals

Geometric blur is most effective when applied to sparse
signals. Images when considered as 2D brightness sig-
nals are not sparse. However much work indicates that
oriented edge filter responses from images are sparse [4]
[5]. Also the formulation and theoretical results about geo-
metric blur so far have assumed a non-negative signal. To
meet the sparseness and non-negative requirements when
considering real images, we break images up into a num-
ber of channels. Each channel is a half-wave rectified ori-
ented edge response. In particular if E(x) is a filter then
two channels would be C1(x) = [I(x)E(x)]χ[I(x)E(x)>0]

and C2(x) = − [I(x)E(x)]χ[I(x)E(x)<0]. We also use a
contrast normalization on the channels [3]. In particular if
C = [C1(x) . . . Cn(x)] is a vector of channel values at x,
then the normalized version would be 1

|C|2+ϵ
where we use

an ϵ = 0.3 for filters with response between +1 and -1. Fig-
ure 7 shows an image and a set of 12 channels resulting
from 6 oriented edge filters.
One useful consequence of treating the positive and neg-

ative components of oriented edge responses separately is
that information about zero crossings is not lost under blur-
ring. Instead of blurring the signal response around a zero
crossing to zero, the positive and negative responses are
both blurred over the area, retaining the information that
there was a zero crossing, but allowing uncertainty as to its
position.

Figure 7: The twelve half-wave rectified channels contrast
normalized from the response of 6 oriented edge filters on
the image. White indicates zero, and black indicates a posi-
tive value. Note that the filter responses are sparse, making
the individual channels appropriate for geometric blur
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Figure 1. Structure of A1
i and A2

i for an image of size 5� 5 and kernel of size 3� 3. In the first row, 9 neighborhoods of the image Ii are
highlighted. For first order approximation, each of of these neighborhoods become a row in A1

i . For the second order case, we take all the
second order combinations of pixel values in each neighborhood and use them as the first 81 (b4) elements of a row in A2

i . The remaining
9 (b2) elements are simply the pixel values. Rows are numbered to show which neighborhood they correspond to.

posed towards any fixed kernel form (e.g. Gaussian, Radial
Basis Function etc). The face images in the range space are
called Volterrafaces in this paper.

2. Volterra Kernel Approximations
From signal processing theory we know that a linear

translation invariant (LTI) functional ⇧ : H ⌅ H, which
maps the function x(t) to the function y(t), can be com-
pletely described by a function h(t) as

⇧(x(t)) = y(t) = x(t)⇤h(t) =
⇥ ⇥

�⇥
h(�)x(t��)d�. (1)

Volterra theory generalizes this concept and states that any
non-linear translation invariant functional ⌃ : H ⌅ H,
which maps the function x(t) to the function y(t), can be
described by a sequence of functions hn(·) as

⇧(x(t)) = y(t) =
⇥�

n=1

yn(t) (2)

where yn(t) =

⇥ ⇥

�⇥
· · ·

⇥ ⇥

�⇥
hn(�1, . . . , �n)x(t��1) . . . x(t��n)d�1 · · · d�n

(3)
Here hn(�1, . . . , �n) are called the Volterra Kernels of the
functional. It must be noted that the above equation can be
seamlessly generalized to 2 dimensional functions, I(u, v),
which for instance, can be images. It should be noted that
eq. (1) is just a special case of the more general eq. (3) if
the first order terms are the only ones taken into account.

Since we are interested in computing using this theory,
we would be using the following discrete form of eq. (3).

yn(m) =
⇥�

q1=�⇥
· · ·

⇥�

qn=�⇥
hn(q1, . . . , qn)x(m� q1) . . . x(m� qn).

(4)
The infinite series form in eq. (4) does not lend itself well
for practical implementations. Further, for a given applica-
tion, only the first few terms may give the desired approxi-
mation of the functional. Thus, we need a truncated form of
the Volterra series, which is denoted in this paper by

⇧p(x(m)) =
p�

n=1

yn(m) = x(m)⇤p h(m) (5)

where p denotes the maximal order of the terms taken into
account for the approximation. Note that in this truncated
Volterra series representation, h(m) is a placeholder for all
the different orders of the kernels.

In general, given a set of input functions I, we are in-
terested in finding a functional ⌃, such that ⌃(I) has some
desired property. This desired property can be captured by
defining a goodness functional on the range space of ⌃. In
cases when the explicit equation relating the input set I to
⌃(I) is known, various techniques like the harmonic input
method, direct expansion etc. ([9]) can be used to com-
pute kernels of the unknown functional. In the absence of
such an explicit relation, we propose that the Volterra ker-
nels be learnt from the data using the goodness functional.
The translation invariance property of the Volterra kernels
ensures that if the images are translated by a fixed amount
in the domain, the mapped images are also translated by
the same amount, and hence the Volterra kernel mapping is
stable.

In this framework, the problem of pattern classification
can be posed as follows. Given a set of input data I = {gi}
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Sparseness and Positiveness

• Blurring only works if the signals being matched are 
sparse and positive.  

• Unfortunately natural images are neither.  
• Combination of oriented filter banks and rectification can 

remedy this problem with little loss in performance. 

10

3.1 Results on Synthetic Data

We present results on synthetic data that demonstrates the
behavior and capability of geometric blur.
In order to see that geometric blur helps in discrimina-

tion we performed a discrimination task using 200 test pat-
terns. Rotated versions of the test patterns were compared
to the original test patterns. Both the original test patterns
and the rotated versions were blurred by either geometric
blur or a uniform Gaussian blur. For geometric blur, a spa-
tially varying kernel Kx(y) = Gα|x|(y), where Gσ(y) is a
Gaussian with standard deviation σ, was applied. For uni-
form Gaussian blur the kernel Gσ(y) was applied. Then
each blurred rotated pattern was compared to all the blurred
original patterns using normalized correlation and matched
to the closest one. The test patterns used in this example
were random with each pixel in a disc of radius 25 pix-
els being turned on with probability 5%. Figures 5 and 6
show the mis-classification rate as the amount of blur, α or
σ is varied. Geometric blur has much better discriminative
power, and manages to be general enough to handle large
rotation somewhat more effectively than uniform blur.
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Figure 5: Identifying 200 random test images after rotation,
using various amounts (α) of geometric blur.
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Figure 6: Identifying 200 random test images after rotation,
using various amounts (σ) of uniform Gaussian blur.

3.2. Pre-processing to obtain Sparse Signals

Geometric blur is most effective when applied to sparse
signals. Images when considered as 2D brightness sig-
nals are not sparse. However much work indicates that
oriented edge filter responses from images are sparse [4]
[5]. Also the formulation and theoretical results about geo-
metric blur so far have assumed a non-negative signal. To
meet the sparseness and non-negative requirements when
considering real images, we break images up into a num-
ber of channels. Each channel is a half-wave rectified ori-
ented edge response. In particular if E(x) is a filter then
two channels would be C1(x) = [I(x)E(x)]χ[I(x)E(x)>0]

and C2(x) = − [I(x)E(x)]χ[I(x)E(x)<0]. We also use a
contrast normalization on the channels [3]. In particular if
C = [C1(x) . . . Cn(x)] is a vector of channel values at x,
then the normalized version would be 1

|C|2+ϵ
where we use

an ϵ = 0.3 for filters with response between +1 and -1. Fig-
ure 7 shows an image and a set of 12 channels resulting
from 6 oriented edge filters.
One useful consequence of treating the positive and neg-

ative components of oriented edge responses separately is
that information about zero crossings is not lost under blur-
ring. Instead of blurring the signal response around a zero
crossing to zero, the positive and negative responses are
both blurred over the area, retaining the information that
there was a zero crossing, but allowing uncertainty as to its
position.

Figure 7: The twelve half-wave rectified channels contrast
normalized from the response of 6 oriented edge filters on
the image. White indicates zero, and black indicates a posi-
tive value. Note that the filter responses are sparse, making
the individual channels appropriate for geometric blur
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an ϵ = 0.3 for filters with response between +1 and -1. Fig-
ure 7 shows an image and a set of 12 channels resulting
from 6 oriented edge filters.
One useful consequence of treating the positive and neg-

ative components of oriented edge responses separately is
that information about zero crossings is not lost under blur-
ring. Instead of blurring the signal response around a zero
crossing to zero, the positive and negative responses are
both blurred over the area, retaining the information that
there was a zero crossing, but allowing uncertainty as to its
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Abstract

Modern descriptors like HOG and SIFT are now com-
monly used in vision for pattern detection within im-
age and video. From a signal processing perspective
this detection process can be efficiently posed as a cor-
relation/convolution between a multi-channel image and
a multi-channel detector/filter which results in a single-
channel response map indicating where the pattern (e.g.
object) has occurred. In this paper we propose a novel
framework for learning a multi-channel detector/filter ef-
ficiently in the frequency domain (both in terms of training
time and memory footprint) which we refer to as a multi-
channel correlation filter. To demonstrate the effectiveness
of our strategy, we evaluate it across a number of visual de-
tection/localization tasks where we: (i) exhibit superior per-
formance to current state of the art correlation filters, and
(ii) superior computational and memory efficiencies com-
pared to state of the art spatial detectors.

1. Introduction
In computer vision it is now rare for tasks like convo-

lution/correlation to be performed on single channel image
signals (e.g. 2D array of intensity values). With the advent
of advanced descriptors like HOG [4] and SIFT [12] convo-
lution/correlation across multi-channel signals has become
the norm rather than the exception in most visual detection
tasks. Most of these image descriptors can be viewed as
multi-channel images/signals with multiple measurements
(such the oriented edge energies) associated with each pixel
location. We shall herein refer to all image descriptors as
multi-channel images. An example of multi-channel corre-
lation can be seen in Figure 1 where a multi-channel image
is convolved/correlated with a multi-channel filter/detector
in order to obtain a single-channel response. The peak of
the response (in white) indicating where the pattern of in-
terest is located.

Like single channel signals, correlation between two
multi-channel signals is rarely performed naively in the spa-
tial domain. Instead, the fast Fourier transform (FFT) af-
fords the efficient application of correlating a desired tem-
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Figure 1. An example of multi-channel correlation/convolution
where one has a multi-channel image x correlated/convolved with
a multi-channel filter h to give a single-channel response y. By
posing this objective in the frequency domain, our multi-channel
correlation filter approach attempts to give a computational &
memory efficient strategy for estimating h given x and y.

plate/filter with a signal. Contrastingly, however, most tech-
niques for estimating a detector for such a purpose (i.e. de-
tection/tracking through convolution) are performed in the
spatial domain [4]. It is this dilemma that is at the heart of
our paper.

This has not always been the case. Correlation fil-
ters, developed initially in the seminal work of Hester and
Casasent [7], are a method for learning a template/filter
in the frequency domain that rose to some prominence in
the 80s and 90s. Although many variants have been pro-
posed [7, 10, 11], the approach’s central tenet is to learn
a filter, that when correlated with a set of training signals,
gives a desired response (typically a peak at the origin of
the object, with all other regions of the correlation response
map being suppressed). Like correlation itself, one of the
central advantages of the approach is that it attempts to learn
the filter in the frequency domain due to the efficiency of
correlation/convolution in that domain. Hitherto, correla-
tion filter theory, to our knowledge, has been restricted to
single-channel signals/filters. In this paper we present an
efficient strategy for handling multi-channel signals/filters
that has numerous applications throughout vision and learn-
ing.

Contributions: In this paper we make the following con-
tributions

1
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monly used in vision for pattern detection within im-
age and video. From a signal processing perspective
this detection process can be efficiently posed as a cor-
relation/convolution between a multi-channel image and
a multi-channel detector/filter which results in a single-
channel response map indicating where the pattern (e.g.
object) has occurred. In this paper we propose a novel
framework for learning a multi-channel detector/filter ef-
ficiently in the frequency domain (both in terms of training
time and memory footprint) which we refer to as a multi-
channel correlation filter. To demonstrate the effectiveness
of our strategy, we evaluate it across a number of visual de-
tection/localization tasks where we: (i) exhibit superior per-
formance to current state of the art correlation filters, and
(ii) superior computational and memory efficiencies com-
pared to state of the art spatial detectors.

1. Introduction
In computer vision it is now rare for tasks like convo-

lution/correlation to be performed on single channel image
signals (e.g. 2D array of intensity values). With the advent
of advanced descriptors like HOG [4] and SIFT [12] convo-
lution/correlation across multi-channel signals has become
the norm rather than the exception in most visual detection
tasks. Most of these image descriptors can be viewed as
multi-channel images/signals with multiple measurements
(such the oriented edge energies) associated with each pixel
location. We shall herein refer to all image descriptors as
multi-channel images. An example of multi-channel corre-
lation can be seen in Figure 1 where a multi-channel image
is convolved/correlated with a multi-channel filter/detector
in order to obtain a single-channel response. The peak of
the response (in white) indicating where the pattern of in-
terest is located.

Like single channel signals, correlation between two
multi-channel signals is rarely performed naively in the spa-
tial domain. Instead, the fast Fourier transform (FFT) af-
fords the efficient application of correlating a desired tem-
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Figure 1. An example of multi-channel correlation/convolution
where one has a multi-channel image x correlated/convolved with
a multi-channel filter h to give a single-channel response y. By
posing this objective in the frequency domain, our multi-channel
correlation filter approach attempts to give a computational &
memory efficient strategy for estimating h given x and y.

plate/filter with a signal. Contrastingly, however, most tech-
niques for estimating a detector for such a purpose (i.e. de-
tection/tracking through convolution) are performed in the
spatial domain [4]. It is this dilemma that is at the heart of
our paper.

This has not always been the case. Correlation fil-
ters, developed initially in the seminal work of Hester and
Casasent [7], are a method for learning a template/filter
in the frequency domain that rose to some prominence in
the 80s and 90s. Although many variants have been pro-
posed [7, 10, 11], the approach’s central tenet is to learn
a filter, that when correlated with a set of training signals,
gives a desired response (typically a peak at the origin of
the object, with all other regions of the correlation response
map being suppressed). Like correlation itself, one of the
central advantages of the approach is that it attempts to learn
the filter in the frequency domain due to the efficiency of
correlation/convolution in that domain. Hitherto, correla-
tion filter theory, to our knowledge, has been restricted to
single-channel signals/filters. In this paper we present an
efficient strategy for handling multi-channel signals/filters
that has numerous applications throughout vision and learn-
ing.

Contributions: In this paper we make the following con-
tributions
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Figure 1. An example of multi-channel correlation/convolution
where one has a multi-channel image x correlated/convolved with
a multi-channel filter h to give a single-channel response y. By
posing this objective in the frequency domain, our multi-channel
correlation filter approach attempts to give a computational &
memory efficient strategy for estimating h given x and y.

plate/filter with a signal. Contrastingly, however, most tech-
niques for estimating a detector for such a purpose (i.e. de-
tection/tracking through convolution) are performed in the
spatial domain [4]. It is this dilemma that is at the heart of
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the 80s and 90s. Although many variants have been pro-
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a filter, that when correlated with a set of training signals,
gives a desired response (typically a peak at the origin of
the object, with all other regions of the correlation response
map being suppressed). Like correlation itself, one of the
central advantages of the approach is that it attempts to learn
the filter in the frequency domain due to the efficiency of
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Abstract

Modern descriptors like HOG and SIFT are now com-
monly used in vision for pattern detection within im-
age and video. From a signal processing perspective
this detection process can be efficiently posed as a cor-
relation/convolution between a multi-channel image and
a multi-channel detector/filter which results in a single-
channel response map indicating where the pattern (e.g.
object) has occurred. In this paper we propose a novel
framework for learning a multi-channel detector/filter ef-
ficiently in the frequency domain (both in terms of training
time and memory footprint) which we refer to as a multi-
channel correlation filter. To demonstrate the effectiveness
of our strategy, we evaluate it across a number of visual de-
tection/localization tasks where we: (i) exhibit superior per-
formance to current state of the art correlation filters, and
(ii) superior computational and memory efficiencies com-
pared to state of the art spatial detectors.

1. Introduction
In computer vision it is now rare for tasks like convo-

lution/correlation to be performed on single channel image
signals (e.g. 2D array of intensity values). With the advent
of advanced descriptors like HOG [4] and SIFT [12] convo-
lution/correlation across multi-channel signals has become
the norm rather than the exception in most visual detection
tasks. Most of these image descriptors can be viewed as
multi-channel images/signals with multiple measurements
(such the oriented edge energies) associated with each pixel
location. We shall herein refer to all image descriptors as
multi-channel images. An example of multi-channel corre-
lation can be seen in Figure 1 where a multi-channel image
is convolved/correlated with a multi-channel filter/detector
in order to obtain a single-channel response. The peak of
the response (in white) indicating where the pattern of in-
terest is located.

Like single channel signals, correlation between two
multi-channel signals is rarely performed naively in the spa-
tial domain. Instead, the fast Fourier transform (FFT) af-
fords the efficient application of correlating a desired tem-



x
h

y

Figure 1. An example of multi-channel correlation/convolution
where one has a multi-channel image x correlated/convolved with
a multi-channel filter h to give a single-channel response y. By
posing this objective in the frequency domain, our multi-channel
correlation filter approach attempts to give a computational &
memory efficient strategy for estimating h given x and y.

plate/filter with a signal. Contrastingly, however, most tech-
niques for estimating a detector for such a purpose (i.e. de-
tection/tracking through convolution) are performed in the
spatial domain [4]. It is this dilemma that is at the heart of
our paper.

This has not always been the case. Correlation fil-
ters, developed initially in the seminal work of Hester and
Casasent [7], are a method for learning a template/filter
in the frequency domain that rose to some prominence in
the 80s and 90s. Although many variants have been pro-
posed [7, 10, 11], the approach’s central tenet is to learn
a filter, that when correlated with a set of training signals,
gives a desired response (typically a peak at the origin of
the object, with all other regions of the correlation response
map being suppressed). Like correlation itself, one of the
central advantages of the approach is that it attempts to learn
the filter in the frequency domain due to the efficiency of
correlation/convolution in that domain. Hitherto, correla-
tion filter theory, to our knowledge, has been restricted to
single-channel signals/filters. In this paper we present an
efficient strategy for handling multi-channel signals/filters
that has numerous applications throughout vision and learn-
ing.

Contributions: In this paper we make the following con-
tributions
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ReLU - Sparse and Positive

• Rectified Linear Unit

relu{x} = max(0, x)

• Connection to LASSO and sparsity??
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Max Pooling - Down Sampling
268 5. NEURAL NETWORKS

Input image Convolutional layer
Sub-sampling
layer

Figure 5.17 Diagram illustrating part of a convolutional neural network, showing a layer of convolu-
tional units followed by a layer of subsampling units. Several successive pairs of such
layers may be used.

and ultimately to yield information about the image as whole. Also, local features
that are useful in one region of the image are likely to be useful in other regions of
the image, for instance if the object of interest is translated.

These notions are incorporated into convolutional neural networks through three
mechanisms: (i) local receptive fields, (ii) weight sharing, and (iii) subsampling. The
structure of a convolutional network is illustrated in Figure 5.17. In the convolutional
layer the units are organized into planes, each of which is called a feature map. Units
in a feature map each take inputs only from a small subregion of the image, and all
of the units in a feature map are constrained to share the same weight values. For
instance, a feature map might consist of 100 units arranged in a 10 × 10 grid, with
each unit taking inputs from a 5×5 pixel patch of the image. The whole feature map
therefore has 25 adjustable weight parameters plus one adjustable bias parameter.
Input values from a patch are linearly combined using the weights and the bias, and
the result transformed by a sigmoidal nonlinearity using (5.1). If we think of the units
as feature detectors, then all of the units in a feature map detect the same pattern but
at different locations in the input image. Due to the weight sharing, the evaluation
of the activations of these units is equivalent to a convolution of the image pixel
intensities with a ‘kernel’ comprising the weight parameters. If the input image is
shifted, the activations of the feature map will be shifted by the same amount but will
otherwise be unchanged. This provides the basis for the (approximate) invariance of

LeCun 1980

Max PoolConvolutional LayerInput Image

max( )
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nition process are tied to the appearance
of objects as originally viewed — that is,
from a specific viewpoint in which an
object has actually appeared. In contrast,
the latter hold that the neural representa-
tions that form the basis of the recognition
process are organized into hierarchies of
features or parts that are either partially or
completely independent of any particular
viewpoint. Which approach better cap-
tures the body of extant results has been
the subject of heated debate over the past
several years1,2. Resolving this debate, how-
ever, has been rather difficult, in that the
best-specified theory, a structural-descrip-
tion model in which objects are repre-
sented as collections of 3D volumes3, is not
particularly consistent with either neural4

or behavioral5 data. On the other hand, the
strongest point in favor of view-based
models has been a set of experimentally-
generated phenomena4,5, rather than a
detailed theory that can account for these
data. Indeed, view-based models have
remained relatively simplistic entities
which do not generalize very well from
familiar to novel viewing conditions6. As
such, the current debate has reached a bit
of stalemate.

In this issue, Riesenhuber and Poggio7

present a new model that has the poten-
tial to remove the impasse. (Because their
term for the model — “hierarchical model
of object recognition” is rather cumber-
some, I have dubbed it ‘HMAX’ which
roughly stands for ‘Hierarchical Model
And X’ – where X is a highly non-linear
maXimum operation.) What they present
is a computational implementation of a
view-based theory of object recognition
that rests heavily on the functional archi-
tecture of the cortical temporal lobe
stream — the part of the brain that is
believed to mediate visual object recogni-
tion. The functional properties of this
neural pathway were first described by
Hubel and Wiesel8, who demonstrated
that information processing in this part
of visual cortex proceeds in a hierarchical
fashion. Specifically (see Fig. 1), the cor-
tical temporal lobe stream progresses from
local responses driven by simple stimulus
properties— for example, oriented lines
—to more global responses driven by
more complex stimulus properties — for
example, bars of particular lengths and
widths8. More recently, it has been
demonstrated that this hierarchy contin-
ues into inferotemporal cortex (IT), where
cells presumably combine the responses
of earlier cortical areas into highly specif-
ic pattern detectors — for example, neu-
rons that respond most strongly to

power to such systems, known views of a
given object or object class are not treat-
ed completely independently of one
another; rather they are ‘pooled’ to form
‘multiple-views’ object representations .
For example, in Poggio and Edelman’s
implementation6, a computational net-
work learned specific views of novel stim-
uli, but then was able to accurately
recognize the same stimuli in new view-
points by interpolating between the
appearance of two or more known views
for a particular object. Other view-based
models have proposed similar normal-
ization mechanisms, for instance, align-
ing a description of the input image with
a known view11 or accumulating evidence
across a set of viewpoint-specific feature
detectors12. For all of these models, the
critical prediction is progressively poor-
er generalization — in the form of either
weaker neural responses or diminished
recognition performance — with increas-
ing distance between a test view and any
known view of an object. At the same
time, whereas view-based models have
tacitly acknowledged that scale- and posi-
tion-invariance are desirable properties
that are suggested by the extant data, they
have not actually proposed mechanisms
for achieving either type of invariance.
Even worse, implementing such invari-
ances would be difficult given the kinds
of features typically used to construct
viewpoint-specific representations, for
example, the (X,Y) image coordinates of
an object’s vertices6. Indeed, the use of
such highly specific coding schemes led
to some of the strongest criticisms of

complex shapes9, individual faces10, or
objects4. Similarly, in HMAX, Riesenhu-
ber and Poggio implement a hierarchy of
conjunctions and disjunctions of pro-
gressively more and more complex feature
combinations, culminating in object-spe-
cific units that are ‘view-tuned’ — that is,
object representations that respond most
strongly to a single viewpoint. Corre-
spondingly, the same sensitivity to view-
point is found in the neurophysiology of
IT, where the vast majority of neurons
that are object-specific appear to respond
preferentially to a particular viewpoint
(although there are also some neurons
that respond equally well to any view)4,10.
At the same time, view-tuned cells typi-
cally respond in an invariant manner to
changes in size or distance. Thus, the chal-
lenge is to develop a theory that predicts
viewpoint-dependent performance for
recognizing known objects, but with lit-
tle or no scale- or position-dependence.

Riesenhuber and Poggio’s model
shows precisely this sort of response pat-
tern, being robust over changes in scale or
position — yet, as already mentioned, the
units coding for specific objects within
HMAX are highly viewpoint-dependent.
The primary reason for this behavior is
that HMAX relies on a non-linear maxi-
mum operation (‘MAX’) for combining
feature responses at one stage in order to
create more complex feature detectors at a
subsequent stage. In the model, the use of
the MAX operator means that the
strongest signal among features feeding
into a unit at the next layer will determine
the response of this unit. This method for
pooling responses also allows Riesenhu-
ber and Poggio’s model to perform well
even with images containing more than
one object. As with the pattern of
responses for feature detectors in HMAX,
the non-linear MAX mechanism for pool-
ing afferents seems to have an analog in
neurophysiology, possibly arising from
lateral inhibition between cells at each
processing stage.

In contrast to the wide explanatory
power of HMAX, this group’s earlier
model of visual recognition6 dealt almost
exclusively with techniques for using
viewpoint-specific object representations
to achieve viewpoint-invariant recogni-
tion. Their solution, typical of nearly all
instantiations of the view-based
approach1,5, was to encode multiple views
of each known object, so that almost any
new view would likely be near to a famil-
iar view. Consequently, recognition per-
formance would be relatively
viewpoint-invariant. Adding additional

Fig. 1. The temporal stream within visual cor-
tex processes information in a hierarchical fash-
ion. Earlier visual areas are most responsive to
simple stimulus patterns such as oriented lines.
In contrast, later visual areas such as inferotem-
poral cortex (IT) have recently been shown to
be sensitive to complex shapes or specific
objects in specific views. It is thought that these
more complex object representations are con-
structed out of progressively more and more
complex feature detectors.
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nition process are tied to the appearance
of objects as originally viewed — that is,
from a specific viewpoint in which an
object has actually appeared. In contrast,
the latter hold that the neural representa-
tions that form the basis of the recognition
process are organized into hierarchies of
features or parts that are either partially or
completely independent of any particular
viewpoint. Which approach better cap-
tures the body of extant results has been
the subject of heated debate over the past
several years1,2. Resolving this debate, how-
ever, has been rather difficult, in that the
best-specified theory, a structural-descrip-
tion model in which objects are repre-
sented as collections of 3D volumes3, is not
particularly consistent with either neural4

or behavioral5 data. On the other hand, the
strongest point in favor of view-based
models has been a set of experimentally-
generated phenomena4,5, rather than a
detailed theory that can account for these
data. Indeed, view-based models have
remained relatively simplistic entities
which do not generalize very well from
familiar to novel viewing conditions6. As
such, the current debate has reached a bit
of stalemate.

In this issue, Riesenhuber and Poggio7

present a new model that has the poten-
tial to remove the impasse. (Because their
term for the model — “hierarchical model
of object recognition” is rather cumber-
some, I have dubbed it ‘HMAX’ which
roughly stands for ‘Hierarchical Model
And X’ – where X is a highly non-linear
maXimum operation.) What they present
is a computational implementation of a
view-based theory of object recognition
that rests heavily on the functional archi-
tecture of the cortical temporal lobe
stream — the part of the brain that is
believed to mediate visual object recogni-
tion. The functional properties of this
neural pathway were first described by
Hubel and Wiesel8, who demonstrated
that information processing in this part
of visual cortex proceeds in a hierarchical
fashion. Specifically (see Fig. 1), the cor-
tical temporal lobe stream progresses from
local responses driven by simple stimulus
properties— for example, oriented lines
—to more global responses driven by
more complex stimulus properties — for
example, bars of particular lengths and
widths8. More recently, it has been
demonstrated that this hierarchy contin-
ues into inferotemporal cortex (IT), where
cells presumably combine the responses
of earlier cortical areas into highly specif-
ic pattern detectors — for example, neu-
rons that respond most strongly to

power to such systems, known views of a
given object or object class are not treat-
ed completely independently of one
another; rather they are ‘pooled’ to form
‘multiple-views’ object representations .
For example, in Poggio and Edelman’s
implementation6, a computational net-
work learned specific views of novel stim-
uli, but then was able to accurately
recognize the same stimuli in new view-
points by interpolating between the
appearance of two or more known views
for a particular object. Other view-based
models have proposed similar normal-
ization mechanisms, for instance, align-
ing a description of the input image with
a known view11 or accumulating evidence
across a set of viewpoint-specific feature
detectors12. For all of these models, the
critical prediction is progressively poor-
er generalization — in the form of either
weaker neural responses or diminished
recognition performance — with increas-
ing distance between a test view and any
known view of an object. At the same
time, whereas view-based models have
tacitly acknowledged that scale- and posi-
tion-invariance are desirable properties
that are suggested by the extant data, they
have not actually proposed mechanisms
for achieving either type of invariance.
Even worse, implementing such invari-
ances would be difficult given the kinds
of features typically used to construct
viewpoint-specific representations, for
example, the (X,Y) image coordinates of
an object’s vertices6. Indeed, the use of
such highly specific coding schemes led
to some of the strongest criticisms of

complex shapes9, individual faces10, or
objects4. Similarly, in HMAX, Riesenhu-
ber and Poggio implement a hierarchy of
conjunctions and disjunctions of pro-
gressively more and more complex feature
combinations, culminating in object-spe-
cific units that are ‘view-tuned’ — that is,
object representations that respond most
strongly to a single viewpoint. Corre-
spondingly, the same sensitivity to view-
point is found in the neurophysiology of
IT, where the vast majority of neurons
that are object-specific appear to respond
preferentially to a particular viewpoint
(although there are also some neurons
that respond equally well to any view)4,10.
At the same time, view-tuned cells typi-
cally respond in an invariant manner to
changes in size or distance. Thus, the chal-
lenge is to develop a theory that predicts
viewpoint-dependent performance for
recognizing known objects, but with lit-
tle or no scale- or position-dependence.

Riesenhuber and Poggio’s model
shows precisely this sort of response pat-
tern, being robust over changes in scale or
position — yet, as already mentioned, the
units coding for specific objects within
HMAX are highly viewpoint-dependent.
The primary reason for this behavior is
that HMAX relies on a non-linear maxi-
mum operation (‘MAX’) for combining
feature responses at one stage in order to
create more complex feature detectors at a
subsequent stage. In the model, the use of
the MAX operator means that the
strongest signal among features feeding
into a unit at the next layer will determine
the response of this unit. This method for
pooling responses also allows Riesenhu-
ber and Poggio’s model to perform well
even with images containing more than
one object. As with the pattern of
responses for feature detectors in HMAX,
the non-linear MAX mechanism for pool-
ing afferents seems to have an analog in
neurophysiology, possibly arising from
lateral inhibition between cells at each
processing stage.

In contrast to the wide explanatory
power of HMAX, this group’s earlier
model of visual recognition6 dealt almost
exclusively with techniques for using
viewpoint-specific object representations
to achieve viewpoint-invariant recogni-
tion. Their solution, typical of nearly all
instantiations of the view-based
approach1,5, was to encode multiple views
of each known object, so that almost any
new view would likely be near to a famil-
iar view. Consequently, recognition per-
formance would be relatively
viewpoint-invariant. Adding additional

Fig. 1. The temporal stream within visual cor-
tex processes information in a hierarchical fash-
ion. Earlier visual areas are most responsive to
simple stimulus patterns such as oriented lines.
In contrast, later visual areas such as inferotem-
poral cortex (IT) have recently been shown to
be sensitive to complex shapes or specific
objects in specific views. It is thought that these
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Current State of the Art - Pose Selection
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CNNs as Feature Extraction
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• Deep Features 

• Deep Tracking 

• Deep Flow



Drawback to Conventional Methods

• Most methods for object tracking employ “online” learning.  
• Online methods are expensive, have to make simplifying 

assumptions (e.g. circulant Toeplitz) to make things efficient. 
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MULTI-CHANNEL CORRELATION FILTERS
HAMED KIANI1, TERENCE SIM1 AND SIMON LUCEY2 1School of Computing, NUS, Singapore
{hkiani,tsim}@comp.nus.edu.sg, simon.lucey@csiro.au 2CSIRO ICT Center, Australia

ABSTRACT

From a signal processing perspective, pattern
detection using modern descriptors like HOG can
be efficiently posed as a correlation between a
multi-channel image and a multi-channel detec-
tor/filter, which results in a single-channel re-
sponse indicating where the pattern (e.g. object)
has occurred. Here, we proposed a novel frame-
work for learning multi-channel filters efficiently
in the frequency domain, both in terms of com-
plexity and memory usage.

CONTRIBUTIONS
• Extending canonical correlation filter theory

to efficiently handle multi-channel signals
• A multi-channel detector whose training

memory is independent of the number of
training samples

• Superior performance to current state of the
art correlation filters, and superior computa-
tional and memory efficiency in comparison
to spatial detectors (e.g. linear SVM) with
comparable detection performance

MULTI-CHANNLE CFS

(i) Spatial domain:

(ii) Fourier domain:

Complexity: O(D3K3)

Memory: O(D2K2)

(iii) Fourier domain with variable re-ordering:

Complexity: O(DK3)

Memory: O(DK2)

NOTATION: ⇤: convolution operation, |y| = D, K:# of channels and V(a(j)) = [a(1)(j), ..., a(K)(j)]

COMPARISON WITH LINEAR SVM
250 500 1000 2000 4000 8000 16000 24000

MCCF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
SVM 6.17 12.35 24.68 49.36 98.87 197.44 395.88 592.32
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Figure 1. Comparing MCCF with SVM + HOG on the problem of pedestrian detection using Daimler dataset. Top:
Memory usage (MB) of MCCF compared to SVM as a function of number of training images. Bottom: Detection rate
as a function of (a) FPR, (b) number of training images at FPR = 0.10, and (c) training time versus training size.
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Figure 2. Facial landmark detection on the LFW dataset.
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Figure 3. Car detection on the MIT Street Dataset.
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Deep Tracking Methods
• Recently, there have been works that have tried to explore 

the employment of tracking using deep learning features.  
• As efficiency is key, strategy is to learn from a large 

ensemble of labeled offline videos. 
• Of particular interest are two papers,  

1. D. Held, S. Thrun, and S. Savarese “Learning to Track at 100 FPS 
with Deep Regression Networks”, ECCV 2016.  

2. L. Bertinetto J. Valmadre J. F. Henriques, A. Vedaldi, P. H. S. Torr  
“Fully-Convolutional Siamese Networks for Object Tracking”, ArXiv 
2016.   
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Deep Regression Networks
4 Held, Thrun, Savarese
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Fig. 2. Our network architecture for tracking. We input to the network a search region
from the current frame and a target from the previous frame. The network learns to
compare these crops to find the target object in the current image

object. By avoiding the need to score many candidate patches, we are able to
track objects at 100 fps.

Prior attempts have been made to use neural networks for tracking in var-
ious other ways [18], including visual attention models [4,29]. However, these
approaches are not competitive with other state-of-the-art trackers when evalu-
ated on di�cult tracker datasets.

3 Method

3.1 Method Overview

At a high level, we feed frames of a video into a neural network, and the network
successively outputs the location of the tracked object in each frame. We train
the tracker entirely o✏ine with video sequences and images. Through our o✏ine
training procedure, our tracker learns a generic relationship between appearance
and motion that can be used to track novel objects at test time with no online
training required.

3.2 Input / output format

What to track. In case there are multiple objects in the video, the network
must receive some information about which object in the video is being tracked.
To achieve this, we input an image of the target object into the network. We
crop and scale the previous frame to be centered on the target object, as shown
in Figure 2. This input allows our network to track novel objects that it has not
seen before; the network will track whatever object is being input in this crop.
We pad this crop to allow the network to receive some contextual information
about the surroundings of the target object.

In more detail, suppose that in frame t� 1, our tracker previously predicted
that the target was located in a bounding box centered at c = (c

x

, c

y

) with a
width of w and a height of h. At time t, we take a crop of frame t� 1 centered
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Fig. 3. Examples of training videos. The goal of the network is to predict the location
of the target object shown in the center of the video frame in the top row, after being
shifted as in the bottom row. The ground-truth bounding box is marked in green
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Fig. 4. Examples of training images. The goal of the network is to predict the location
of the target object shown in the center of the image crop in the top row, after being
shifted as in the bottom row. The ground-truth bounding box is marked in green

4.2 Learning Motion Smoothness

Objects in the real-world tend to move smoothly through space. Given an am-
biguous image in which the location of the target object is uncertain, a tracker
should predict that the target object is located near to the location where it was
previously observed. This is especially important in videos that contain multiple
nearly-identical objects, such as multiple fruit of the same type. Thus we wish
to teach our network that, all else being equal, small motions are preferred to
large motions.

To concretize the idea of motion smoothness, we model the center of the
bounding box in the current frame (c0

x

, c

0
y

) relative to the center of the bounding
box in the previous frame (c

x

, c

y

) as

c

0
x

= c

x

+ w ·�x (1)

c

0
y

= c

y

+ h ·�y (2)

where w and h are the width and height, respectively, of the bounding box of
the previous frame. The terms �x and �y are random variables that capture
the change in position of the bounding box relative to its size. In our training
set, we find that objects change their position such that �x and �y can each be
modeled with a Laplace distribution with a mean of 0 (see Appendix for details).
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where w and h are the width and height, respectively, of the bounding box of
the previous frame. The terms �x and �y are random variables that capture
the change in position of the bounding box relative to its size. In our training
set, we find that objects change their position such that �x and �y can each be
modeled with a Laplace distribution with a mean of 0 (see Appendix for details).
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6 Results

6.1 Overall performance

The performance of our tracker is shown in Figure 5, which demonstrates that
our tracker has good robustness and performs near the top in accuracy. Further,
our overall ranking (computed as the average of accuracy and robustness) out-
performs all previous trackers on this benchmark. We have thus demonstrated
the value of o✏ine training for improving tracking performance. Moreover, these
results were obtained after training on only 307 short videos. Figure 5 as well as
analysis in the appendix suggests that further gains could be achieved if the train-
ing set size were increased by labeling more videos. Qualitative results, as well as
failure cases, can be found on the project page: http://davheld.github.io/;
currently, the tracker can fail due to occlusions or overfitting to objects in the
training set.

Ac
cu
ra
cy
	R
an
k	

Robustness	Rank	

GOTURN	
	(Ours)	

Fig. 5. Tracking results from the VOT 2014 tracking challenge. Our tracker’s perfor-
mance is indicated with a blue circle, outperforming all previous methods on the overall
rank (average of accuracy and robustness ranks). The points shown along the black line
represent training from 14, 37, 157, and 307 videos, with the same number of training
images used in each case

On an Nvidia GeForce GTX Titan X GPU with cuDNN acceleration, our
tracker runs at 6.05 ms per frame (not including the 1 ms to load each image in
OpenCV), or 165 fps. On a GTX 680 GPU, our tracker runs at an average of
9.98 ms per frame, or 100 fps. If only a CPU is available, the tracker runs at 2.7
fps. Because our tracker is able to perform all of its training o✏ine, during test
time the tracker requires only a single feed-forward pass through the network,
and thus the tracker is able to run at real-time speeds.
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1. The network compares the previous frame to the current frame to find 
the target object in the current frame. 

2. The network acts as a local generic “object detector” and simply 
locates the nearest “object.”  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1. The network compares the previous frame to the current frame to find the
target object in the current frame.

2. The network acts as a local generic “object detector” and simply locates the
nearest “object.”

We di↵erentiate between these hypotheses by comparing the performance of our
network (shown in Figure 2) to the performance of a network which does not
receive the previous frame as input (i.e. the network only receives the current
frame as input). For this experiment, we train each of these networks separately.
If the network does not receive the previous frame as input, then the tracker can
only act as a local generic object detector (hypothesis 2).
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Fig. 7. Overall tracking errors for our network which receives as input both the current
and previous frame, compared to a network which receives as input only the current
frame (lower is better). This comparison allows us to disambiguate between two hy-
potheses that can explain how our neural-network tracker works (see Section 6.2).
Accuracy and robustness metrics are shown in the appendix

Figure 7 shows the degree to which each of the hypotheses holds true for
di↵erent tracking conditions. For example, when there is an occlusion or a large
camera motion, the tracker benefits greatly from using the previous frame, which
enables the tracker to “remember” which object is being tracked. Figure 7 shows
that the tracker performs much worse in these cases when the previous frame
is not included. In such cases, hypothesis 1 plays a large role, i.e. the tracker is
comparing the previous frame to the current frame to find the target object.

On the other hand, when there is a size change or no variation, the tracker
performs slightly worse when using the previous frame (or approximately the
same). Under a large size change, the corresponding appearance change is too
drastic for our network to perform an accurate comparison between the previous
frame and the current frame. Thus the tracker is acting as a local generic object
detector in such a case and hypothesis 2 is dominant. Each hypothesis holds true
in varying degrees for di↵erent tracking conditions, as shown in Figure 7.

How does it work?
• Two hypotheses,  

1. The network compares the previous frame to the current frame to find 
the target object in the current frame. 

2. The network acts as a local generic “object detector” and simply 
locates the nearest “object.”  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6.3 Generality vs Specificity

How well can our tracker generalize to novel objects not found in our training
set? For this analysis, we separate our test set into objects for which at least 25
videos of the same class appear in our training set and objects for which fewer
than 25 videos of that class appear in our training set. Figure 8 shows that, even
for test objects that do not have any (or very few) similar objects in our training
set, our tracker performs well. The performance continues to improve even as
videos of unrelated objects are added to our training set, since our tracker is
able to learn a generic relationship between an object’s appearance change and
its motion that can generalize to novel objects.
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Fig. 8. Overall tracking errors for di↵erent types of objects in our test set as a function
of the number of videos in our training set (lower is better). Class labels are not used by
our tracker; these labels were obtained only for the purpose of this analysis. Accuracy
and robustness metrics are shown in the appendix

Additionally, our tracker can also be specialized to track certain objects par-
ticularly well. Figure 8 shows that, for test objects for which at least 25 videos
of the same class appear in the training set, we obtain a large improvement as
more training videos of those types of objects are added. This allows the user
to specialize the tracker for particular applications. For example, if the tracker
is being used for autonomous driving, then the user can add more objects of
people, bikes, and cars into the training set, and the tracker will learn to track
those objects particularly well. At the same time, Figure 8 also demonstrates
that our tracker can track novel objects that do not appear in our training set,
which is important when tracking objects in uncontrolled environments.

6.4 Ablative Analysis

In Table 1, we show which components of our system contribute the most to
our performance. We train our network with random cropping from a Laplace
distribution to teach our tracker to prefer small motions to large motions (e.g.
motion smoothness), as explained in Section 4.2. Table 1 shows the benefit of this
approach compared to the baseline of uniformly sampling random crops (“No
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Fig. 2: Training pairs extracted from the same video: exemplar image and cor-
responding search image from same video. When a sub-window extends beyond
the extent of the image, the missing portions are filled with the mean RGB value.

aspect ratio of the image. The elements of the score map are considered to belong
to a positive example if they are within radius R of the centre (accounting for
the stride k of the network)

y[u] =

(
+1 if kku� ck  R

�1 otherwise .

(6)

The losses of the positive and negative examples in the score map are weighted
to eliminate class imbalance.

Since our network is fully-convolutional, there is no risk that it learns a bias
for the sub-window at the centre. We believe that it is e↵ective to consider
search images centred on the target because it is likely that the most di�cult
sub-windows, and those which have the most influence on the performance of
the tracker, are those adjacent to the target.

Note that since the network is symmetric f(z, x) = f(x, z), it is in fact
also fully-convolutional in the exemplar. While this allows us to use di↵erent
size exemplar images for di↵erent objects in theory, we assume uniform sizes
because it simplifies the mini-batch implementation. However, this assumption
could be relaxed in the future.

2.3 ImageNet Video for tracking

The 2015 edition of ImageNet Large Scale Visual Recognition Challenge [10]
(ILSVRC) introduced the ImageNet Video dataset as part of the new object

detection from video challenge. Participants are required to classify and locate
objects from 30 di↵erent classes of animals and vehicles. Training and valida-
tion sets together contain almost 4500 videos, with a total of more than one

L. Bertinetto J. Valmadre J. F. Henriques, A. Vedaldi, P. H. S. Torr  “Fully-Convolutional Siamese Networks for Object Tracking”, ArXiv 2016. 
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Fig. 3: Success plots for OPE (one pass evaluation), TRE (temporal robustness
evaluation) and SRE (spatial robustness evaluation) of the OTB-13 [11] bench-
mark. The results of CCT, SCT4 and KCFDP were only available for OPE at
the time of writing.

threshold. Trackers are then compared in terms of area under the curve of success
rates for di↵erent values of this threshold. In addition to the trackers reported
by [11], in Figure 3 we also compare against seven more recent state-of-the-art
trackers presented in the major computer vision conferences and that can run at
frame-rate speed: Staple [33], LCT [34], CCT [35], SCT4 [36], DLSSVM NU [37],
DSST [38] and KCFDP [39]. Given the nature of the sequences, for this bench-
mark only we convert 25% of the pairs to grayscale during training. All the other
hyper-parameters (for training and tracking) are fixed.

4.4 The VOT benchmarks

For our experiments, we use the latest stable version of the Visual Object Track-
ing (VOT) toolkit (tag vot2015-final), which evaluates trackers on sequences
chosen from a pool of 356, selected so that seven di↵erent challenging situations
are well represented. Many of the sequences were originally presented in other
datasets (e.g. ALOV [1] and OTB [11]). Within the benchmark, trackers are
automatically re-initialized five frames after failure, which is deemed to have oc-
curred when the IoU between the estimated bounding box and the ground truth
becomes zero.

VOT-14 results. We compare our method SiamFC (and the variant SiamFC-
3s) against the best 10 trackers that participated in the 2014 edition of the VOT
challenge [40]. We also include Staple [33] and GOTURN [28], two recent real-
time trackers presented respectively at CVPR 2016 and ECCV 2016. Trackers are
evaluated according to two measures of performance: accuracy and robustness.
The former is calculated as the average IoU, while the latter is expressed in
terms of the total number of failures. These give insight into the behaviour of a
tracker. Figure 4 shows the Accuracy-Robustness plot, where the best trackers
are closer to the top-right corner.

VOT-15 results. We also compare our method against the 40 best participants
in the 2015 edition [12]. In this case, the raw scores of accuracy and number
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Fig. 4: VOT-14 Accuracy-robustness plot. Best trackers are closer to the top-
right corner.

of failures are used to compute the expected average overlap measure, which
represents the average IoU with no re-initialization following a failure. Figure 5
illustrates the final ranking in terms of expected average overlap, while Table 2
reports scores and speed of the 15 highest ranked trackers of the challenge.

VOT-16 results. At the time of writing, the results of the 2016 edition were
not available. However, to facilitate an early comparison with our method, we
report our scores. For SiamFC and SiamFC-3s we obtain, respectively, an overall
expected overlap (average between the baseline and unsupervised experiments) of
0.3876 and 0.4051. Please note that these results are di↵erent from the VOT-16
report, as our entry in the challenge was a preliminary version of this work.

Despite its simplicity, our method improves over recent state-of-the-art real-
time trackers (Figures 3 and 4). Moreover, it outperforms most of the best
methods in the challenging VOT-15 benchmark, while being the only one that
achieves frame-rate speed (Figure 5 and Table 2). These results demonstrate
that the expressiveness of the similarity metric learnt by our fully-convolutional
Siamese network on ImageNet Video alone is enough to achieve very strong re-
sults, comparable or superior to recent state-of-the-art methods, which often are
several orders of magnitude slower. We believe that considerably higher perfor-
mance could be obtained by augmenting the minimalist online tracking pipeline
with the methods often adopted by the tracking community (e.g. model update,
bounding-box regression, fine-tuning, memory).

4.5 Dataset size

Table 3 illustrates how the size of the dataset used to train the Siamese network
greatly influences the performance. The expected average overlap (measured on
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Fig. 6: Snapshots of the simple tracker described in Section 2.4 equipped with
our proposed fully-convolutional Siamese network trained from scratch on Ima-
geNet Video. Our method does not perform any model update, so it uses only the
first frame to compute '(z). Nonetheless, it is surprisingly robust to a number
of challenging situations like motion blur (row 2), drastic change of appearance
(rows 1, 3 and 4), poor illumination (row 6) and scale change (row 6). On the
other hand, our method is sensitive to scenes with confusion (row 5), arguably
because the model is never updated and thus the cross-correlation gives a high
scores for all the windows that are similar to the first appearance of the tar-
get. All sequences come from the VOT-15 benchmark: gymnastics1, car1, fish3,
iceskater1, marching, singer1. The snapshots have been taken at fixed frames (1,
50, 100 and 200) and the tracker is never re-initialized.
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Figure 3: The accurate architecture begins with two convolutional feature extractors. The
extracted feature vectors are concatenated and compared by a number of fully-
connected layers. The inputs are two image patches and the output is a single real
number between 0 and 1, which we interpret as a measure of similarity between
the input images.

compared using the cosine similarity measure to produce the final output of the network.
Figure 2 provides an overview of the architecture.

The network is trained by minimizing a hinge loss. The loss is computed by considering
pairs of examples centered around the same image position where one example belongs to
the positive and one to the negative class. Let s

+

be the output of the network for the
positive example, s� be the output of the network for the negative example, and let m, the
margin, be a positive real number. The hinge loss for that pair of examples is defined as
max(0,m+ s�� s

+

). The loss is zero when the similarity of the positive example is greater
than the similarity of the negative example by at least the margin m. We set the margin
to 0.2 in our experiments.

The hyperparameters of this architecture are the number of convolutional layers in each
sub-network (num conv layers), the size of the convolution kernels (conv kernel size),
the number of feature maps in each layer (num conv feature maps), and the size of the
input patch (input patch size).

3.2.2 Accurate Architecture

The second architecture is derived from the first by replacing the cosine similarity measure
with a number of fully-connected layers (see Figure 3). This architectural change increased
the running time, but decreased the error rate. The two sub-networks comprise a number
of convolutional layers, with a rectified linear unit following each layer. The resulting
two vectors are concatenated and forward-propagated through a number of fully-connected
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Fast Architecture   Stereo by Training a Network to Compare Patches

Dot product

Left input patch

Convolution

Convolution, ReLU

Convolution, ReLU

Normalize

Similarity score

Right input patch

Convolution

Convolution, ReLU

Convolution, ReLU

Normalize

Figure 2: The fast architecture is a siamese network. The two sub-networks consist of
a number of convolutional layers followed by rectified linear units (abbreviated
“ReLU”). The similarity score is obtained by extracting a vector from each of
the two input patches and computing the cosine similarity between them. In
this diagram, as well as in our implementation, the cosine similarity computation
is split in two steps: normalization and dot product. This reduces the running
time because the normalization needs to be performed only once per position (see
Section 3.3).

where o
pos

is chosen randomly from the interval [�dataset pos, dataset pos]. The reason
for including o

pos

, instead of setting it to zero, has to do with the stereo method used
later on. In particular, we found that cross-based cost aggregation performs better when
the network assigns low matching costs to good matches as well as near matches. In our
experiments, the hyperparameter dataset pos was never larger than one pixel.

3.2 Network Architectures

We describe two network architectures for learning a similarity measure on image patches.
The first architecture is faster than the second, but produces disparity maps that are slightly
less accurate. In both cases, the input to the network is a pair of small image patches and
the output is a measure of similarity between them. Both architectures contain a trainable
feature extractor that represents each image patch with a feature vector. The similarity
between patches is measured on the feature vectors instead of the raw image intensity
values. The fast architecture uses a fixed similarity measure to compare the two feature
vectors, while the accurate architecture attempts to learn a good similarity measure on
feature vectors.

3.2.1 Fast Architecture

The first architecture is a siamese network, that is, two shared-weight sub-networks joined
at the head (Bromley et al., 1993). The sub-networks are composed of a number of convo-
lutional layers with rectified linear units following all but the last layer. Both sub-networks
output a vector capturing the properties of the input patch. The resulting two vectors are
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Results - KITTI 2015ˇ

Zbontar and LeCun

Left input image Right input image Ground truth

Census Error: 4.58%

Fast architecture Error: 2.79%
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Figure 6: Examples of predictions on the KITTI 2015 data set. Observe that vehicles in
motion are labeled densely in the KITTI 2015 data set.
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FlowNet

Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom).

nate the ‘upconvolution’ results with the features from the
‘contractive’ part of the network.

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

A simple choice is to stack both input images together
and feed them through a rather generic network, allowing
the network to decide itself how to process the image pair to
extract the motion information. This is illustrated in Fig. 2
(top). We call this architecture consisting only of convolu-
tional layers ‘FlowNetSimple’.

In principle, if this network is large enough, it could learn
to predict optical flow. However, we can never be sure that a
local gradient optimization like stochastic gradient descent
can get the network to this point. Therefore, it could be ben-
eficial to hand-design an architecture which is less generic,
but may perform better with the given data and optimization
techniques.

A straightforward step is to create two separate, yet iden-
tical processing streams for the two images and to combine
them at a later stage as shown in Fig. 2 (bottom). With
this architecture the network is constrained to first produce
meaningful representations of the two images separately
and then combine them on a higher level. This roughly

resembles the standard matching approach when one first
extracts features from patches of both images and then com-
pares those feature vectors. However, given feature repre-
sentations of two images, how would the network find cor-
respondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 ! Rc, with w, h, and c being their
width, height and number of channels, our correlation layer
lets the network compare each patch from f1 with each path
from f2.

For now we consider only a single comparison of two
patches. The ’correlation’ of two patches centered at x1 in
the first map and x2 in the second map is then defined as

c(x1,x2) =

X

o2[�k,k]⇥[�k,k]

hf1(x1 + o), f2(x2 + o)i (1)

for a square patch of size K := 2k + 1. Note that Eq. 1
is identical to one step of a convolution in neural networks,
but instead of convolving data with a filter, it convolves data
with other data. For this reason, it has no trainable weights.

Computing c(x1,x2) involves c · K2 multiplications.
Comparing all patch combinations involves w

2 · h2 such
computations, yields a large result and makes efficient for-
ward and backward passes intractable. Thus, for computa-

P. Fisher, D. Cremers, T. Brox, et al. “FlowNet: Learning Optical Flow with Convolutional Networks”, ICCV 2015. 



FlowNet - Refinement

Figure 3. Refinement of the coarse feature maps to the high reso-
lution prediction.

tional reasons we limit the maximum displacement for com-
parisons and also introduce striding in both feature maps.

Given a maximum displacement d, for each location x1

we compute correlations c(x1,x2) only in a neighborhood
of size D := 2d + 1, by limiting the range of x2. We use
strides s1 and s2, to quantize x1 globally and to quantize x2

within the neighborhood centered around x1.
In theory, the result produced by the correlation is four-

dimensional: for every combination of two 2D positions we
obtain a correlation value, i.e. the scalar product of the two
vectors which contain the values of the cropped patches re-
spectively. In practice we organize the relative displace-
ments in channels. This means we obtain an output of size
(w ⇥ h⇥D

2
). For the backward pass we implemented the

derivatives with respect to each bottom blob accordingly.

Refinement. CNNs are good at extracting high-level ab-
stract features of images, by interleaving convolutional lay-
ers and pooling, i.e. spatially shrinking the feature maps.
Pooling is necessary to make network training computation-
ally feasible and, more fundamentally, to allow aggregation
of information over large areas of the input images. How-
ever, pooling results in reduced resolution, so in order to
provide dense per-pixel predictions we need a way to refine
the coarse pooled representation.

Our approach to this refinement is depicted in Figure 3.
The main ingredient are ‘upconvolutional’ layers, consist-
ing of unpooling (extending the feature maps, as opposed to
pooling) and a convolution. Such layers have been used pre-
viously [38, 37, 16, 28, 9]. To perform the refinement, we
apply the ‘upconvolution’ to feature maps, and concatenate
it with corresponding feature maps from the ’contractive’
part of the network and an upsampled coarser flow predic-
tion (if available). This way we preserve both the high-level
information passed from coarser feature maps and fine lo-
cal information provided in lower layer feature maps. Each
step increases the resolution twice. We repeat this 4 times,
resulting in a predicted flow for which the resolution is still
4 times smaller than the input.

We discover that further refinement from this resolution
does not significantly improve the results, compared to a

Ground truth FlowNetS FlowNetS+v

Figure 4. The effect of variational refinement. In case of small
motions (first row) the predicted flow is changed dramatically. For
larger motions (second row), big errors are not corrected, but the
flow field is smoothed, resulting in lower EPE.

computationally less expensive bilinear upsampling to full
image resolution. The result of this bilinear upsampling is
the final flow predicted by the network.

In an alternative scheme, instead of bilinear upsampling
we use the variational approach from [6] without the match-
ing term: we start at the 4 times downsampled resolution
and then use the coarse to fine scheme with 20 iterations to
bring the flow field to the full resolution. Finally, we run 5

more iterations at the full image resolution. We additionally
compute image boundaries with the approach from [26] and
respect the detected boundaries by replacing the smooth-
ness coefficient by ↵ = exp(��b(x, y)

), where b(x, y)

denotes the thin boundary strength resampled at the respec-
tive scale and between pixels. This upscaling method is
more computationally expensive than simple bilinear up-
sampling, but adds the benefits of variational methods to
obtain smooth and subpixel-accurate flow fields. In the fol-
lowing, we denote the results obtained by this variational
refinement with a ‘+v’ suffix. An example of variational
refinement can be seen in Fig. 4.

4. Training Data

Unlike traditional approaches, neural networks require
data with ground truth not only for optimizing several pa-
rameters, but to learn to perform the task from scratch. In
general, obtaining such ground truth is hard, because true
pixel correspondences for real world scenes cannot easily be
determined. An overview of the available datasets is given
in Table 1.

Frame Frames with Ground truth
pairs ground truth density per frame

Middlebury 72 8 100%
KITTI 194 194 v50%
Sintel 1,041 1,041 100%
Flying Chairs 22,872 22,872 100%

Table 1. Size of already available datasets and the proposed Flying
Chairs dataset.

P. Fisher, D. Cremers, T. Brox, et al. “FlowNet: Learning Optical Flow with Convolutional Networks”, ICCV 2015. 



FlowNet - Results

Images Ground truth EpicFlow FlowNetS FlowNetC

Figure 7. Examples of optical flow prediction on the Sintel dataset. In each row left to right: overlaid image pair, ground truth flow and 3
predictions: EpicFlow, FlowNetS and FlowNetC. Endpoint error is shown for every frame. Note that even though the EPE of FlowNets is
usually worse than that of EpicFlow, the networks often better preserve fine details.

on KITTI discussed above, and also from detailed perfor-
mance analysis on Sintel Final (not shown in the tables).
FlowNetS+ft achieves an s40+ error (EPE on pixels with
displacements of at least 40 pixels) of 43.3px, and for
FlowNetC+ft this value is 48px. One explanation is that the
maximum displacement of the correlation does not allow to
predict very large motions. This range can be increased at

the cost of computational efficiency.

6. Conclusion

Building on recent progress in design of convolutional
network architectures, we have shown that it is possible to
train a network to directly predict optical flow from two in-

P. Fisher, D. Cremers, T. Brox, et al. “FlowNet: Learning Optical Flow with Convolutional Networks”, ICCV 2015. 


