Deep Tracking & Flow

Instructor - Simon Lucey

16-623 - Designing Computer Vision Apps

Today

- Deep Features
- Deep Tracking
- Deep Flow

Primary Visual Cortex

Spatial Sensitivity

Spatial Sensitivity

Kingdom, Field, Olmos, 2007

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint change.
- Two options to match local image patches:-

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint change.
- Two options to match local image patches:-

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint change.
- Two options to match local image patches:-
- 1. simultaneously estimate the distortion and position of matching patch

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint change.
- Two options to match local image patches:-
- 1. simultaneously estimate the distortion and position of matching patch

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint change.
- Two options to match local image patches:-
- 1. simultaneously estimate the distortion and position of matching patch

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint change.
- Two options to match local image patches:-
- 1. simultaneously estimate the distortion and position of matching patch

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint and/or illumination change.
- Two options to match patches:-
- 1. simultaneously estimate the distortion and position of matching patch.
- 2. to "blur" the template window performing matching coarse-to-fine.

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint and/or illumination change.
- Two options to match patches:-
- 1. simultaneously estimate the distortion and position of matching patch.
- 2. to "blur" the template window performing matching coarse-to-fine.

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint and/or illumination change.
- Two options to match patches:-
- 1. simultaneously estimate the distortion and position of matching patch.
- 2. to "blur" the template window performing matching coarse-to-fine.

- As pointed out in seminal work by Berg and Malik (CVPR'01) the effectiveness of SSD will degrade with significant viewpoint and/or illumination change.
- Two options to match patches:-
- 1. simultaneously estimate the distortion and position of matching patch.
- 2. to "blur" the template window performing matching coarse-to-fine.

Sp

- Blurring sparse a
- Unfortur
- Combina remedy

e.g., oriented gradients, Gabor filters

 Blurring or sparse and

^{20° rotation} ^{40° rotation} ^{40° rotation} ^{20° rotation}

ometric blur, alpha

20° rotation 40° rotation

Reminder: Convolution

"signal"

Reminder: Convolution

"single-channel response" y

"single-channel response" y

K $\mathbf{y} = \sum \mathbf{x}^{(k)} * \mathbf{h}^{(k)}$ k=1

image patch 3@ (224x224)

 $\eta\{\} \rightarrow \text{non-linear function (relu, max pooling)}$

ReLU - Sparse and Positive

Rectified Linear Unit

 $\operatorname{relu}\{x\} = \max(0, x)$

Connection to LASSO and sparsity??

$$||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \frac{\lambda}{2}||\mathbf{x}||_1$$

Max Pooling - Down Sampling

LeCun 1980

Hierarchical Learning

Hierarchical Learning

Current State of the Art

Current State of the Art

Current State of the Art

Current State of the Art - Pose Selection

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.

K. Chatfield, V. Lempitsky, A. Vedaldi and A. Zisserman. "Return of the Devil in the Details: Delving Deep into Convolutional Networks." In BMVC, 2014.

Impact on Object Recognition

Visualizing CNNs

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

CNNs as Feature Extraction

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.

K. Chatfield, V. Lempitsky, A. Vedaldi and A. Zisserman. "Return of the Devil in the Details: Delving Deep into Convolutional Networks." In BMVC, 2014.

Today

- Deep Features
- Deep Tracking
- Deep Flow

Drawback to Conventional Methods

- Most methods for object tracking employ "online" learning.
- Online methods are expensive, have to make simplifying assumptions (e.g. circulant Toeplitz) to make things efficient.

0.8

0.6

n rate

Deep Tracking Methods

- Recently, there have been works that have tried to explore the employment of tracking using deep learning features.
- As efficiency is key, strategy is to learn from a large ensemble of labeled offline videos.
- Of particular interest are two papers,
 - 1. D. Held, S. Thrun, and S. Savarese "Learning to Track at 100 FPS with Deep Regression Networks", ECCV 2016.
 - L. Bertinetto J. Valmadre J. F. Henriques, A. Vedaldi, P. H. S. Torr "Fully-Convolutional Siamese Networks for Object Tracking", ArXiv 2016.

What does this method remind you of?

D. Held, S. Thrun, and S. Savarese "Learning to Track at 100 FPS with Deep Regression Networks", ECCV 2016.

What does this method remind you of? Why is it fast?

D. Held, S. Thrun, and S. Savarese "Learning to Track at 100 FPS with Deep Regression Networks", ECCV 2016.

Supervised Descent Method (SDM)

- SDM assumes a linear relationship between appearance and geometry: $\Delta \mathbf{p} = \mathbf{R}[\mathcal{I}(\mathbf{p}) \mathcal{T}(\mathbf{0})]$
- Iteratively updates until convergence

Supervised Descent Method (SDM)

- SDM assumes a linear relationship between appearance and geometry: $\Delta \mathbf{p} = \mathbf{R}[\mathcal{I}(\mathbf{p}) \mathcal{T}(\mathbf{0})]$
- Iteratively updates until convergence

What is a potential issue here?

Previous video frame centered on object

Current video frame, shifted, with ground-truth bounding box

Image centered on object

Shifted image with ground-truth bounding box

D. Held, S. Thrun, and S. Savarese "Learning to Track at 100 FPS with Deep Regression Networks", ECCV 2016.

How does it work?

• Two hypotheses,

- 1. The network compares the previous frame to the current frame to find the target object in the current frame.
- 2. The network acts as a local generic "object detector" and simply locates the nearest "object."

How does it work?

• Two hypotheses,

- 1. The network compares the previous frame to the current frame to find the target object in the current frame.
- 2. The network acts as a local generic "object detector" and simply locates the nearest "object."

D. Held, S. Thrun, and S. Savarese "Learning to Track at 100 FPS with Deep Regression Networks", ECCV 2016.

Generality vs. Specificity

"Siamese" as they apply an identical transformation to both inputs

Fully Convolutional

Fully Convolutional

image patch 3@ (224x224)

 $\rightarrow \varphi \rightarrow ?$

Fully Convolutional

image patch 3@ (224x224)

$$arphi\{\mathbf{e}_i * \mathbf{x}\} = \mathbf{e}_i * arphi\{\mathbf{x}\}$$
 $\mathbf{e}_i = [0, \dots, 1, \dots, 0]^T$

7

• Example training sequences.

L. Bertinetto J. Valmadre J. F. Henriques, A. Vedaldi, P. H. S. Torr "Fully-Convolutional Siamese Networks for Object Tracking", ArXiv 2016.

Success rate

Frame 1 (init.)

Frame 50

Frame 100

Frame 200

Frame 1 (init.)

Frame 50

Frame 100

Frame 200

Today

- Deep Features
- Deep Tracking
- Deep Flow

10 827 -1 **23** 1.90 1 10 16 E. 12 200 1 81 100 50 80 ES 1000 35.2 100 --di la 1000 28 1.2 23 N. 12 100 8 g WE d'ai 100 8.7 250 R.) **MARK** Sec F 1 1.0 1.6 1.6.8 198 -0-100 1.5 42 100 * * * * * * * * * * * * * * 2475 100 ****

Flow = Parts Based Registration

Flow = Parts Based Registration

Flow = Parts Based Registration

Reminder - Exhaustive Search

"We can do much better than this if the graph is sparse."

Reminder - Exhaustive Search

"We can do much better than this if the graph is sparse."
Learning $\{D_i(\mathbf{x}_i)\}_{i=1}^N$

all other patches (negatives)

patch at pixel *u* (positive)

for every pixel u

H. Bristow, J. Valmadre, and S. Lucey "Dense Semantic Correspondence where Every Pixel is a Classifier", ICCV 2015.

Learning $\{D_i(\mathbf{x}_i)\}_{i=1}^N$

J. Z'bontar & Y. LeCunn "Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches", JMLR 2015.

Learning $\{D_i(\mathbf{x}_i)\}_{i=1}^N$

J. Z^{*}bontar & Y. LeCunn "Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches", JMLR 2015.

Fast Architecture

J. Z^{*}bontar & Y. LeCunn "Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches", JMLR 2015.

Results - KITTI 2015

J. Z'bontar & Y. LeCunn "Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches", JMLR 2015.

More Data?

N. Mayer, D. Cremers, T. Brox, et al. "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation", CVPR 2016.

More Data?

N. Mayer, D. Cremers, T. Brox, et al. "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation", CVPR 2016.

FlowNet

P. Fisher, D. Cremers, T. Brox, et al. "FlowNet: Learning Optical Flow with Convolutional Networks", ICCV 2015.

FlowNet - Refinement

P. Fisher, D. Cremers, T. Brox, et al. "FlowNet: Learning Optical Flow with Convolutional Networks", ICCV 2015.

FlowNet - Results

P. Fisher, D. Cremers, T. Brox, et al. "FlowNet: Learning Optical Flow with Convolutional Networks", ICCV 2015.