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Example of SLAM for AR

Taken from: H. Liu et al. “Robust Keyframe-based Monocular SLAM for Augmented Reality”, ISMAR 2016.  



Example of SLAM for AR

Taken from: H. Liu et al. “Robust Keyframe-based Monocular SLAM for Augmented Reality”, ISMAR 2016.  



Example of SLAM for AR

Taken from: H. Liu et al. “Robust Keyframe-based Monocular SLAM for Augmented Reality”, ISMAR 2016.  



What is SLAM??
• Simultaneous Localization and Mapping. 
• On mobile interested primarily in Visual SLAM (VSLAM).  
• Sometimes called Mono SLAM if there is only one camera.  
• Can be viewed as an online SfM problem. 



Today

• SfM - Bundle Adjustment 

• VSLAM - Keyframe vs. Filtering 

• Visual Odometry 

• Loop Closure



Reminder - Bundle Adjustment

The cathedral dataset: 
• 480 camera matrices                 
• Total dof  =  
• 91178 3D points.  
• Total dof = 

[⌦i, ⌧ i]
480⇥ (3 + 3) = 2880

91178⇥ 3 = 273543

Adapted from: Optimization Methods in Computer Vision.  Anders Eriksson 



Reminder - Two view reconstruction

Start with pair of images taken from slightly different viewpoints



Reminder - Two view reconstruction

Find features using a corner detection algorithm



Reminder - Two view reconstruction

Match features using a greedy algorithm



Reminder - Two view reconstruction

Fit fundamental matrix using robust algorithm such as RANSAC



Reminder - Two view reconstruction

Find matching points that agree with the fundamental matrix



Reminder - Two view reconstruction

• Extract essential matrix from fundamental matrix.  
• Extract        rotation and      translation from essential matrix. 
• Reconstruct the 3D positions w of points. 

T =


⌦ ⌧
0T 1

�
2 SE(3)

• We refer to these matrices as belonging to the Special 
Euclidean Group - SE(3). 

�x̃ = ⌦w + ⌧

⌦ ⌧



Reminder: Lie Algebra

• Exponential maps on the SO(3), SL(3) and SE(3) groups are 
related to the much broader topic of Lie Algebra.  

• More details on this topic can be found at in Murray et al. 
1994.
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SfM - Bundle Adjustment

x 2D projection w 3D point
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SfM - Linearization
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SfM - Linearization

why not additive??
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SfM - Linearization
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Visibility of Points

“visibility matrix”⌥ =

2
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SfM - Bundle Adjustment
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SfM - Bundle Adjustment

Michael Kaess 9 

SLAM as a Sparse Least-Squares Problem 
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Sparse 
measurement 

Jacobian 

[Dellaert & Kaess , IJRR 2006] arg min
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• Can be solved efficiently using sparse 
linear solvers such as, 
• Google Ceres Solver - http://ceres-solver.org 
• G2o - https://openslam.org/g2o.html .  

• Then iteratively apply GN or LM 
algorithm. 

http://ceres-solver.org
https://openslam.org/g2o.html
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Reminder: Gauss-Newton Algorithm

• Gauss-Newton (GN) algorithm common strategy for 
optimizing non-linear least-squares problems.  

18

s.t. F : RN ! RM

Step 1:

Step 2:

 keep applying steps until        converges. 
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“Is the update additive?”



Today

• SfM - Bundle Adjustment 

• VSLAM - Keyframe vs. Filtering 

• Visual Odometry 

• Loop Closure



Mono SLAM = Online SFM

• Monocular SLAM is just another name for “online” SFM.  
• If computation was not an issue, one would just apply 

Bundle Adjustment after every new frame
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Mono SLAM - MRF

• One can view the problem of SfM - Bundle Adjustment as 
doing inference on a Markov Random Field (MRF). 

• Problem - becomes exponentially harder as times goes on.  

H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual SLAM: Why filter?” Image and Vision 
Computing, vol. 30, no. 2, pp. 65–77, 2012.  
.

Markov random field shown in Fig. 1(a). The variables of interest are
Ti, each a vector of parameters representing a historic position of the
camera, and xj, each a vector of parameters representing the position
of a feature, assumed to be static. These are linked by image feature
measurements zij – the observation of feature xj from pose Ti – repre-
sented by edges in the graph. In real-time SLAM, this network will
continuously grow as new pose and measurement variables are
added at every time step, and new feature variables will be added
whenever new parts of a scene are explored for the first time.

Although various parametric and non-parametric inference tech-
niques have been applied to SFM and SLAM problems (such as parti-
cle filters [47,16]), the most generally successful methods in both
filtering and optimisation have assumed Gaussian distributions for
measurements and ultimately state-space estimation; equivalently
we could say that they are least-squares methods which minimises
in the reprojection error. BA in SFM, or the extended Kalman filter
(EKF) and variants in SLAM all manipulate the same types of matrices
representing Gaussian means and covariances. The clear reason is the
special status of the Gaussian as the central distribution of probability
theory whichmakes it the most efficient way to represent uncertainty
in a wide range of practical inference. We therefore restrict our anal-
ysis to this domain.

A direct application of optimal BA to sequential SLAMwould involve
finding the full maximum likelihood solution to the graph in Fig. 1(a)
from scratch as it grew at every new time-step. The computational
cost would clearly get larger at every frame, and quickly out of hand.
In inference suitable for real-time implementation, we therefore face
two key possibilities in order to avoid computational explosion.

In the filtering approach illustrated in Fig. 1(b), all poses other than
the current one are marginalised out after every frame. Features,
which may be measured again in the future, are retained. The result
is a graph that stays relatively compact; it will not grow arbitrarily
with time, and will not grow at all during repeated movement in a re-
stricted area, adding persistent feature variables only when new areas
are explored. The downside is that the graph quickly becomes fully
inter-connected, since every elimination of a past pose variable
causes fill-in with new links between every pair of feature variables
to which it was joined. Joint potentials over all of these mutually-
interconnected variables must therefore be stored and updated. The
computational cost of propagating joint distributions scales poorly
with the number of variables involved, and this is the main drawback
of filtering: in SLAM, the number of features in the map will be se-
verely limited. The standard algorithm for filtering using Gaussian
probability distributions is the EKF, where the dense inter-
connections between features are manifest in a single joint density
over features stored by a mean vector and large covariance matrix.

The other option is to retain BA's optimisation approach, solving the
graph from scratch time after time as it grows, but to sparsify it by re-
moving all but a small subset of past poses. In some applications it is
sensible for the retained poses to be in a slidingwindow of themost re-
cent camera positions, but more generally they are a set of intelligently
or heuristically chosen keyframes (see Fig. 1(c)). The other poses, and all
the measurements connected to them, are not marginalised out as in
the filter, but simply discarded — they do not contribute to estimates.

Compared to filtering, this approach will produce a graph that has
more elements (since many past poses are retained), but importantly
for inference the lack of marginalisation means that it will remain
sparsely inter-connected. The result is that graph optimisation remains
relatively efficient, even if the number of features in the graph andmea-
sured from the keyframes is very high. The ability to incorporate more
featuremeasurements counters the information lost from the discarded
frames. Note that BA-type optimisation methods are usually referred to
as smoothing in the robotics community [13].

So the key question is whether it makes sense to summarise the
information gained from historic poses and measurements by joint
probability distributions in state space and propagate these through
time (filtering), or to discard some of those measurements in such a
way that repeated optimisation from scratch becomes feasible (key-
frame BA), and propagating a probability distribution through time
is unnecessary. Comparisons of filtering and BA have been presented
in the past, but mainly focused on loop closures [12]. In particular, the
fact that the EKF led to inconsistencies due to linearisation issues has
been studied well in the past [24]. These results led to a series of sub-
mapping techniques [7,17,43] which are motivated not only by the
inconsistencies in filters once uncertainty is large but also by the
fact that a filter's cost increases, typical quadratically, with the map
size. Similarly, several techniques were introduced to reduce the
computational complexity of real-time BA using segment-wise opti-
misation [31], feature marginalisation followed by pose-graph opti-
misation [29,49], incremental smoothing [26] or relative/topological
representations [46]. Thus, it is possible to achieve linear or even
constant-time complexity for large scale visual SLAM. However, it
remained unclear whether filtering or BA should be used for the
building block of SLAM: very local motion estimates.

In our conference paper which the current article extends [48], we
compared filtering versus BA for monocular SLAM in terms of accura-
cy and computational cost. The analysis was performed using covari-
ance back-propagation starting from the ground truth solution and
assuming the best for filtering — that the accuracy of BA and filtering
is identical. The main result was: Increasing the number of observa-
tions N increases the accuracy, while increasing the number of inter-
mediate keyframes M only has a minor effect. Considering the cost of
BA (linear in N) to the cost of filtering (cubic in N), it becomes clear
that BA is the more efficient technique — especially if high accuracy
is required. In this work, we affirm this result while generalising our
previous work along several dimensions: First, we implement and an-
alyse the full SLAM pipeline including monocular bootstrapping, fea-
ture initialisation, and motion-only estimation. In particular, we
implement a state of the art filter and analyse its accuracy compared
to BA. Second, we extend our analysis to stereo SLAM. Third, andmost
important, we lift the assumption that all points are visible in all
frames and investigate a more realistic scenario where there is only
a partial scene overlap.

3. Defining an experimental setup

Hence, there are two main classes of real-time visual SLAM sys-
tems capable of consistent local mapping. The first class is based on

T1 T2 3T0

1x x2 x3 x 4 x5 x6

a) Markov Random Field b) Filter c) Keyframe BA

1x x2 x3 x 4 x5 x6 1x x2 x3 x 4 x5 x6

T T1 T2 T3T0 T1 T2 T3T0

Fig. 1. (a) SLAM/SFM as Markov random field without representing the measurements explicitly. (b) and (c) visualise how inference progressed in a filter and with keyframe-based
optimisation.

66 H. Strasdat et al. / Image and Vision Computing 30 (2012) 65–77
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Mono SLAM - Filtering

• Classic way of resolving this was to pose BA problem as a 
filter - such as an Extended Kalman Filter (EKF).  

• Problem - Wastes processing time on frames that added 
very little information.  

Markov random field shown in Fig. 1(a). The variables of interest are
Ti, each a vector of parameters representing a historic position of the
camera, and xj, each a vector of parameters representing the position
of a feature, assumed to be static. These are linked by image feature
measurements zij – the observation of feature xj from pose Ti – repre-
sented by edges in the graph. In real-time SLAM, this network will
continuously grow as new pose and measurement variables are
added at every time step, and new feature variables will be added
whenever new parts of a scene are explored for the first time.

Although various parametric and non-parametric inference tech-
niques have been applied to SFM and SLAM problems (such as parti-
cle filters [47,16]), the most generally successful methods in both
filtering and optimisation have assumed Gaussian distributions for
measurements and ultimately state-space estimation; equivalently
we could say that they are least-squares methods which minimises
in the reprojection error. BA in SFM, or the extended Kalman filter
(EKF) and variants in SLAM all manipulate the same types of matrices
representing Gaussian means and covariances. The clear reason is the
special status of the Gaussian as the central distribution of probability
theory whichmakes it the most efficient way to represent uncertainty
in a wide range of practical inference. We therefore restrict our anal-
ysis to this domain.

A direct application of optimal BA to sequential SLAMwould involve
finding the full maximum likelihood solution to the graph in Fig. 1(a)
from scratch as it grew at every new time-step. The computational
cost would clearly get larger at every frame, and quickly out of hand.
In inference suitable for real-time implementation, we therefore face
two key possibilities in order to avoid computational explosion.

In the filtering approach illustrated in Fig. 1(b), all poses other than
the current one are marginalised out after every frame. Features,
which may be measured again in the future, are retained. The result
is a graph that stays relatively compact; it will not grow arbitrarily
with time, and will not grow at all during repeated movement in a re-
stricted area, adding persistent feature variables only when new areas
are explored. The downside is that the graph quickly becomes fully
inter-connected, since every elimination of a past pose variable
causes fill-in with new links between every pair of feature variables
to which it was joined. Joint potentials over all of these mutually-
interconnected variables must therefore be stored and updated. The
computational cost of propagating joint distributions scales poorly
with the number of variables involved, and this is the main drawback
of filtering: in SLAM, the number of features in the map will be se-
verely limited. The standard algorithm for filtering using Gaussian
probability distributions is the EKF, where the dense inter-
connections between features are manifest in a single joint density
over features stored by a mean vector and large covariance matrix.

The other option is to retain BA's optimisation approach, solving the
graph from scratch time after time as it grows, but to sparsify it by re-
moving all but a small subset of past poses. In some applications it is
sensible for the retained poses to be in a slidingwindow of themost re-
cent camera positions, but more generally they are a set of intelligently
or heuristically chosen keyframes (see Fig. 1(c)). The other poses, and all
the measurements connected to them, are not marginalised out as in
the filter, but simply discarded — they do not contribute to estimates.

Compared to filtering, this approach will produce a graph that has
more elements (since many past poses are retained), but importantly
for inference the lack of marginalisation means that it will remain
sparsely inter-connected. The result is that graph optimisation remains
relatively efficient, even if the number of features in the graph andmea-
sured from the keyframes is very high. The ability to incorporate more
featuremeasurements counters the information lost from the discarded
frames. Note that BA-type optimisation methods are usually referred to
as smoothing in the robotics community [13].

So the key question is whether it makes sense to summarise the
information gained from historic poses and measurements by joint
probability distributions in state space and propagate these through
time (filtering), or to discard some of those measurements in such a
way that repeated optimisation from scratch becomes feasible (key-
frame BA), and propagating a probability distribution through time
is unnecessary. Comparisons of filtering and BA have been presented
in the past, but mainly focused on loop closures [12]. In particular, the
fact that the EKF led to inconsistencies due to linearisation issues has
been studied well in the past [24]. These results led to a series of sub-
mapping techniques [7,17,43] which are motivated not only by the
inconsistencies in filters once uncertainty is large but also by the
fact that a filter's cost increases, typical quadratically, with the map
size. Similarly, several techniques were introduced to reduce the
computational complexity of real-time BA using segment-wise opti-
misation [31], feature marginalisation followed by pose-graph opti-
misation [29,49], incremental smoothing [26] or relative/topological
representations [46]. Thus, it is possible to achieve linear or even
constant-time complexity for large scale visual SLAM. However, it
remained unclear whether filtering or BA should be used for the
building block of SLAM: very local motion estimates.

In our conference paper which the current article extends [48], we
compared filtering versus BA for monocular SLAM in terms of accura-
cy and computational cost. The analysis was performed using covari-
ance back-propagation starting from the ground truth solution and
assuming the best for filtering — that the accuracy of BA and filtering
is identical. The main result was: Increasing the number of observa-
tions N increases the accuracy, while increasing the number of inter-
mediate keyframes M only has a minor effect. Considering the cost of
BA (linear in N) to the cost of filtering (cubic in N), it becomes clear
that BA is the more efficient technique — especially if high accuracy
is required. In this work, we affirm this result while generalising our
previous work along several dimensions: First, we implement and an-
alyse the full SLAM pipeline including monocular bootstrapping, fea-
ture initialisation, and motion-only estimation. In particular, we
implement a state of the art filter and analyse its accuracy compared
to BA. Second, we extend our analysis to stereo SLAM. Third, andmost
important, we lift the assumption that all points are visible in all
frames and investigate a more realistic scenario where there is only
a partial scene overlap.

3. Defining an experimental setup

Hence, there are two main classes of real-time visual SLAM sys-
tems capable of consistent local mapping. The first class is based on
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Fig. 1. (a) SLAM/SFM as Markov random field without representing the measurements explicitly. (b) and (c) visualise how inference progressed in a filter and with keyframe-based
optimisation.
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Mono SLAM - Filtering

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

¾ When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty 
 

• Filtering approaches are often times problematic (e.g. think 
when the device stops moving).  

• When frames are taken at nearby positions compared to the 
scene distance, 3D points will exhibit large uncertainty. 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



Mono SLAM - Keyframe

• A better strategy is to employ keyframe BA.  
• Made popular by Klein & Murray’s - Parallel Tracking and 

Mapping (PTAM) algorithm.

Markov random field shown in Fig. 1(a). The variables of interest are
Ti, each a vector of parameters representing a historic position of the
camera, and xj, each a vector of parameters representing the position
of a feature, assumed to be static. These are linked by image feature
measurements zij – the observation of feature xj from pose Ti – repre-
sented by edges in the graph. In real-time SLAM, this network will
continuously grow as new pose and measurement variables are
added at every time step, and new feature variables will be added
whenever new parts of a scene are explored for the first time.

Although various parametric and non-parametric inference tech-
niques have been applied to SFM and SLAM problems (such as parti-
cle filters [47,16]), the most generally successful methods in both
filtering and optimisation have assumed Gaussian distributions for
measurements and ultimately state-space estimation; equivalently
we could say that they are least-squares methods which minimises
in the reprojection error. BA in SFM, or the extended Kalman filter
(EKF) and variants in SLAM all manipulate the same types of matrices
representing Gaussian means and covariances. The clear reason is the
special status of the Gaussian as the central distribution of probability
theory whichmakes it the most efficient way to represent uncertainty
in a wide range of practical inference. We therefore restrict our anal-
ysis to this domain.

A direct application of optimal BA to sequential SLAMwould involve
finding the full maximum likelihood solution to the graph in Fig. 1(a)
from scratch as it grew at every new time-step. The computational
cost would clearly get larger at every frame, and quickly out of hand.
In inference suitable for real-time implementation, we therefore face
two key possibilities in order to avoid computational explosion.

In the filtering approach illustrated in Fig. 1(b), all poses other than
the current one are marginalised out after every frame. Features,
which may be measured again in the future, are retained. The result
is a graph that stays relatively compact; it will not grow arbitrarily
with time, and will not grow at all during repeated movement in a re-
stricted area, adding persistent feature variables only when new areas
are explored. The downside is that the graph quickly becomes fully
inter-connected, since every elimination of a past pose variable
causes fill-in with new links between every pair of feature variables
to which it was joined. Joint potentials over all of these mutually-
interconnected variables must therefore be stored and updated. The
computational cost of propagating joint distributions scales poorly
with the number of variables involved, and this is the main drawback
of filtering: in SLAM, the number of features in the map will be se-
verely limited. The standard algorithm for filtering using Gaussian
probability distributions is the EKF, where the dense inter-
connections between features are manifest in a single joint density
over features stored by a mean vector and large covariance matrix.

The other option is to retain BA's optimisation approach, solving the
graph from scratch time after time as it grows, but to sparsify it by re-
moving all but a small subset of past poses. In some applications it is
sensible for the retained poses to be in a slidingwindow of themost re-
cent camera positions, but more generally they are a set of intelligently
or heuristically chosen keyframes (see Fig. 1(c)). The other poses, and all
the measurements connected to them, are not marginalised out as in
the filter, but simply discarded — they do not contribute to estimates.

Compared to filtering, this approach will produce a graph that has
more elements (since many past poses are retained), but importantly
for inference the lack of marginalisation means that it will remain
sparsely inter-connected. The result is that graph optimisation remains
relatively efficient, even if the number of features in the graph andmea-
sured from the keyframes is very high. The ability to incorporate more
featuremeasurements counters the information lost from the discarded
frames. Note that BA-type optimisation methods are usually referred to
as smoothing in the robotics community [13].

So the key question is whether it makes sense to summarise the
information gained from historic poses and measurements by joint
probability distributions in state space and propagate these through
time (filtering), or to discard some of those measurements in such a
way that repeated optimisation from scratch becomes feasible (key-
frame BA), and propagating a probability distribution through time
is unnecessary. Comparisons of filtering and BA have been presented
in the past, but mainly focused on loop closures [12]. In particular, the
fact that the EKF led to inconsistencies due to linearisation issues has
been studied well in the past [24]. These results led to a series of sub-
mapping techniques [7,17,43] which are motivated not only by the
inconsistencies in filters once uncertainty is large but also by the
fact that a filter's cost increases, typical quadratically, with the map
size. Similarly, several techniques were introduced to reduce the
computational complexity of real-time BA using segment-wise opti-
misation [31], feature marginalisation followed by pose-graph opti-
misation [29,49], incremental smoothing [26] or relative/topological
representations [46]. Thus, it is possible to achieve linear or even
constant-time complexity for large scale visual SLAM. However, it
remained unclear whether filtering or BA should be used for the
building block of SLAM: very local motion estimates.

In our conference paper which the current article extends [48], we
compared filtering versus BA for monocular SLAM in terms of accura-
cy and computational cost. The analysis was performed using covari-
ance back-propagation starting from the ground truth solution and
assuming the best for filtering — that the accuracy of BA and filtering
is identical. The main result was: Increasing the number of observa-
tions N increases the accuracy, while increasing the number of inter-
mediate keyframes M only has a minor effect. Considering the cost of
BA (linear in N) to the cost of filtering (cubic in N), it becomes clear
that BA is the more efficient technique — especially if high accuracy
is required. In this work, we affirm this result while generalising our
previous work along several dimensions: First, we implement and an-
alyse the full SLAM pipeline including monocular bootstrapping, fea-
ture initialisation, and motion-only estimation. In particular, we
implement a state of the art filter and analyse its accuracy compared
to BA. Second, we extend our analysis to stereo SLAM. Third, andmost
important, we lift the assumption that all points are visible in all
frames and investigate a more realistic scenario where there is only
a partial scene overlap.

3. Defining an experimental setup

Hence, there are two main classes of real-time visual SLAM sys-
tems capable of consistent local mapping. The first class is based on

T1 T2 3T0

1x x2 x3 x 4 x5 x6

a) Markov Random Field b) Filter c) Keyframe BA

1x x2 x3 x 4 x5 x6 1x x2 x3 x 4 x5 x6

T T1 T2 T3T0 T1 T2 T3T0

Fig. 1. (a) SLAM/SFM as Markov random field without representing the measurements explicitly. (b) and (c) visualise how inference progressed in a filter and with keyframe-based
optimisation.
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G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces”, ISMAR 
2007.  
H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual SLAM: Why filter?” Image and Vision 
Computing, vol. 30, no. 2, pp. 65–77, 2012.  
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¾ When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty 

¾ One way to avoid this consists of skipping frames until the average uncertainty of 
the 3D points decreases below a certain threshold. The selected frames are 
called keyframes 

¾ Rule of the thumb: add a keyframe when  

. . .  

average-depth 
keyframe distance > threshold (~10-20 %) 

Keyframe Selection

• One way to avoid this consists of skipping frames until the 
average uncertainty of the 3D points decreases below a 
certain threshold. The selected frames are called keyframes.  

• Rule of thumb: add a keyframe when, 
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Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



Keyframe-based SLAM
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Typical visual odometry pipeline used in many algorithms  
[Nister’04, PTAM’07, LIBVISO’08, LSD-SLAM’14, SVO’14, ORB-SLAM’15] 

Keyframe 1 Keyframe 2 

Initial pointcloud New triangulated points 

Current frame New keyframe 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



PTAM - Separate Threads

• An innovation of Klein & Murray’s PTAM method was the 
separation of the camera tracking (   ) and map estimation    
(   ) tasks.   

• Camera Tracking or visual odometery (VO) runs on one 
thread in real-time.  

• Map estimation runs on a separate thread (not having to run 
in real-time) allowing for bundle adjustment.  

• Same idea is still being utilized in current state of the art 
visual SLAM algorithms (e.g. ORB SLAM). 

G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces”, ISMAR 2007.  
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drift appearing in monocular SLAM. From this work we take
the idea of loop closing with 7DoF pose graph optimization
and apply it to the Essential Graph defined in Section III-D

Strasdat et. al [7] used the front-end of PTAM, but per-
formed the tracking only in a local map retrieved from a covi-
sibility graph. They proposed a double window optimization
back-end that continuously performs BA in the inner window,
and pose graph in a limited-size outer window. However, loop
closing is only effective if the size of the outer window is
large enough to include the whole loop. In our system we
take advantage of the excellent ideas of using a local map
based on covisibility, and building the pose graph from the
covisibility graph, but apply them in a totally redesigned front-
end and back-end. Another difference is that, instead of using
specific features for loop detection (SURF), we perform the
place recognition on the same tracked and mapped features,
obtaining robust frame-rate relocalization and loop detection.

Pirker et. al [33] proposed CD-SLAM, a very complete
system including loop closing, relocalization, large scale oper-
ation and efforts to work on dynamic environments. However
map initialization is not mentioned. The lack of a public
implementation does not allow us to perform a comparison
of accuracy, robustness or large-scale capabilities.

The visual odometry of Song et al. [34] uses ORB features
for tracking and a temporal sliding window BA back-end. In
comparison our system is more general as they do not have
global relocalization, loop closing and do not reuse the map.
They are also using the known distance from the camera to
the ground to limit monocular scale drift.

Lim et. al [25], work published after we submitted our
preliminary version of this work [12], use also the same
features for tracking, mapping and loop detection. However
the choice of BRIEF limits the system to in-plane trajectories.
Their system only tracks points from the last keyframe so the
map is not reused if revisited (similar to visual odometry)
and has the problem of growing unbounded. We compare
qualitatively our results with this approach in section VIII-E.

The recent work of Engel et. al [10], known as LSD-
SLAM, is able to build large scale semi-dense maps, using
direct methods (i.e. optimization directly over image pixel
intensities) instead of bundle adjustment over features. Their
results are very impressive as the system is able to operate
in real time, without GPU acceleration, building a semi-dense
map, with more potential applications for robotics than the
sparse output generated by feature-based SLAM. Nevertheless
they still need features for loop detection and their camera
localization accuracy is significantly lower than in our system
and PTAM, as we show experimentally in Section VIII-B. This
surprising result is discussed in Section IX-B.

In a halfway between direct and feature-based methods is
the semi-direct visual odometry SVO of Forster et al. [22].
Without requiring to extract features in every frame they are
able to operate at high frame-rates obtaining impressive results
in quadracopters. However no loop detection is performed and
the current implementation is mainly thought for downward
looking cameras.

Finally we want to discuss about keyframe selection. All
visual SLAM works in the literature agree that running BA

Fig. 1. ORB-SLAM system overview, showing all the steps performed by
the tracking, local mapping and loop closing threads. The main components
of the place recognition module and the map are also shown.

with all the points and all the frames is not feasible. The
work of Strasdat et al. [31] showed that the most cost-
effective approach is to keep as much points as possible,
while keeping only non-redundant keyframes. The PTAM
approach was to insert keyframes very cautiously to avoid
an excessive growth of the computational complexity. This
restrictive keyframe insertion policy makes the tracking fail in
hard exploration conditions. Our survival of the fittest strategy
achieves unprecedented robustness in difficult scenarios by
inserting keyframes as quickly as possible, and removing later
the redundant ones, to avoid the extra cost.

III. SYSTEM OVERVIEW

A. Feature Choice
One of the main design ideas in our system is that the

same features used by the mapping and tracking are used
for place recognition to perform frame-rate relocalization and
loop detection. This makes our system efficient and avoids
the need to interpolate the depth of the recognition features
from near SLAM features as in previous works [6], [7]. We
requiere features that need for extraction much less than 33ms
per image, which excludes the popular SIFT (⇠ 300ms) [19],
SURF (⇠ 300ms) [18] or the recent A-KAZE (⇠ 100ms) [35].
To obtain general place recognition capabilities, we require
rotation invariance, which excludes BRIEF [16] and LDB [36].

We chose ORB [9], which are oriented multi-scale FAST
corners with a 256 bits descriptor associated. They are ex-
tremely fast to compute and match, while they have good
invariance to viewpoint. This allows to match them from wide
baselines, boosting the accuracy of BA. We already shown the
good performance of ORB for place recognition in [11]. While
our current implementation make use of ORB, the techniques
proposed are not restricted to these features.

B. Three Threads: Tracking, Local Mapping and Loop Closing
Our system, see an overview in Fig. 1, incorporates three

threads that run in parallel: tracking, local mapping and loop

R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, “ORB-SLAM: a Versatile and Accurate  
Monocular SLAM System” IEEE Trans. Robotics 2015.
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and apply it to the Essential Graph defined in Section III-D

Strasdat et. al [7] used the front-end of PTAM, but per-
formed the tracking only in a local map retrieved from a covi-
sibility graph. They proposed a double window optimization
back-end that continuously performs BA in the inner window,
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implementation does not allow us to perform a comparison
of accuracy, robustness or large-scale capabilities.
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comparison our system is more general as they do not have
global relocalization, loop closing and do not reuse the map.
They are also using the known distance from the camera to
the ground to limit monocular scale drift.

Lim et. al [25], work published after we submitted our
preliminary version of this work [12], use also the same
features for tracking, mapping and loop detection. However
the choice of BRIEF limits the system to in-plane trajectories.
Their system only tracks points from the last keyframe so the
map is not reused if revisited (similar to visual odometry)
and has the problem of growing unbounded. We compare
qualitatively our results with this approach in section VIII-E.

The recent work of Engel et. al [10], known as LSD-
SLAM, is able to build large scale semi-dense maps, using
direct methods (i.e. optimization directly over image pixel
intensities) instead of bundle adjustment over features. Their
results are very impressive as the system is able to operate
in real time, without GPU acceleration, building a semi-dense
map, with more potential applications for robotics than the
sparse output generated by feature-based SLAM. Nevertheless
they still need features for loop detection and their camera
localization accuracy is significantly lower than in our system
and PTAM, as we show experimentally in Section VIII-B. This
surprising result is discussed in Section IX-B.

In a halfway between direct and feature-based methods is
the semi-direct visual odometry SVO of Forster et al. [22].
Without requiring to extract features in every frame they are
able to operate at high frame-rates obtaining impressive results
in quadracopters. However no loop detection is performed and
the current implementation is mainly thought for downward
looking cameras.

Finally we want to discuss about keyframe selection. All
visual SLAM works in the literature agree that running BA
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the tracking, local mapping and loop closing threads. The main components
of the place recognition module and the map are also shown.

with all the points and all the frames is not feasible. The
work of Strasdat et al. [31] showed that the most cost-
effective approach is to keep as much points as possible,
while keeping only non-redundant keyframes. The PTAM
approach was to insert keyframes very cautiously to avoid
an excessive growth of the computational complexity. This
restrictive keyframe insertion policy makes the tracking fail in
hard exploration conditions. Our survival of the fittest strategy
achieves unprecedented robustness in difficult scenarios by
inserting keyframes as quickly as possible, and removing later
the redundant ones, to avoid the extra cost.

III. SYSTEM OVERVIEW

A. Feature Choice
One of the main design ideas in our system is that the

same features used by the mapping and tracking are used
for place recognition to perform frame-rate relocalization and
loop detection. This makes our system efficient and avoids
the need to interpolate the depth of the recognition features
from near SLAM features as in previous works [6], [7]. We
requiere features that need for extraction much less than 33ms
per image, which excludes the popular SIFT (⇠ 300ms) [19],
SURF (⇠ 300ms) [18] or the recent A-KAZE (⇠ 100ms) [35].
To obtain general place recognition capabilities, we require
rotation invariance, which excludes BRIEF [16] and LDB [36].

We chose ORB [9], which are oriented multi-scale FAST
corners with a 256 bits descriptor associated. They are ex-
tremely fast to compute and match, while they have good
invariance to viewpoint. This allows to match them from wide
baselines, boosting the accuracy of BA. We already shown the
good performance of ORB for place recognition in [11]. While
our current implementation make use of ORB, the techniques
proposed are not restricted to these features.

B. Three Threads: Tracking, Local Mapping and Loop Closing
Our system, see an overview in Fig. 1, incorporates three

threads that run in parallel: tracking, local mapping and loop

R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, “ORB-SLAM: a Versatile and Accurate  
Monocular SLAM System” IEEE Trans. Robotics 2015.
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SLAM as a Sparse Least-Squares Problem 
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Incremental Smoothing and Mapping (iSAM) 

Solving a growing system: 

– R factor from previous step 

– How do we add new measurements? 

 

 

Key idea: 

– Append to existing matrix factorization 

– “Repair” using Givens rotations 
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New measurements -> 

[Kaess et al., TRO 08] 



Today

• SfM - Bundle Adjustment 

• VSLAM - Keyframe vs. Filtering 

• Visual Odometry 

• Loop Closure



VO vs SFM
• VO is a particular case of SFM  
• VO focuses on estimating the 3D motion of the camera 

sequentially (as a new frame arrives) and in real time. 
• Terminology: sometimes SFM is used as a synonym of VO. 

How do we estimate the relative motion 𝑇𝑘 ? 

Image 𝐼𝑘−1 Image 𝐼𝑘 

𝑇𝑘 

       “An Invitation to 3D Vision”, Ma, Soatto, Kosecka, Sastry, Springer, 2003 

𝑇𝑘 

ItIt�1
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Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



A Brief History of VO

• 1980: First known VO real-time implementation on a robot 
by Hans Moraveck PhD thesis (NASA/JPL) for Mars rovers 
using one sliding camera (sliding stereo).  

• 1980 to 2000: The VO research was dominated by NASA/
JPL in preparation of 2004 Mars mission.   

• 2004: VO used on a robot on another planet: Mars rovers 
Spirit and Opportunity  

• 2004. VO was revived in the academic environment by 
Nister et al. The term VO became popular. 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 
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¾ 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD 
thesis (NASA/JPL) for Mars rovers using one sliding camera (sliding stereo). 
 

¾ 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of 
2004 Mars mission (see papers from Matthies, Olson, etc. from JPL) 
 

¾ 2004: VO used on a robot on another planet: Mars rovers Spirit and Opportunity 
 

¾ 2004. VO was revived in the academic environment  
by Nister «Visual Odometry» paper.  
The term VO became popular. 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



VO vs Visual SLAM
• VO only aims to the local consistency of 

the trajectory.  
• SLAM aims to the global consistency of 

the trajectory and of the map. 
• VO can be used as a building block of 

SLAM. 
• VO is SLAM before closing the loop!  
• The choice between VO and V-SLAM 

depends on the tradeoff between 
performance and consistency, and 
simplicity in implementation.  

• VO trades off consistency for real-time 
performance, without the need to keep 
track of all the previous history of the 
camera.  

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

¾ VO only aims to the local consistency of the 
trajectory  

¾ SLAM aims to the global consistency of the 
trajectory and of the map 

¾ VO can be used as a building block of SLAM 

¾ VO is SLAM before closing the loop! 

¾ The choice between VO and V-SLAM depends on 
the tradeoff between performance and 
consistency, and simplicity in implementation.  

¾ VO trades off consistency for real-time 
performance, without the need to keep track of all 
the previous history of the camera. 

Visual odometry 

Visual SLAM 
Image courtesy from [Clemente, RSS’07] 
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VO vs VSLAM vs SFM

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

SFM VSLAM VO 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



Today

• SfM - Bundle Adjustment 

• VSLAM - Keyframe vs. Filtering 

• Visual Odometry 

• Loop Closure



Loop Closure Detection
• Loop constraints are very valuable constraints for local BA. 
• Loop constraints can be found by evaluating visual similarity 

between the current camera images and past camera images. 
• Visual similarity can be computed using global image descriptors 

(GIST descriptors) or local image descriptors (e.g., ORB features).  
• Image retrieval is the problem of finding the most similar image of a 

template image in a database of billion images (image retrieval).  
• This can be solved efficiently with Bag of Words. 

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

¾ Loop constraints are very valuable constraints for pose graph optimization 
¾ Loop constraints can be found by evaluating visual similarity between the 

current camera images and past camera images. 
¾ Visual similarity can be computed using global image descriptors (GIST 

descriptors) or local image descriptors (e.g., SIFT, BRIEF, BRISK features) 
¾ Image retrieval is the problem of finding the most similar image of a template 

image in a database of billion images (image retrieval). This can be solved 
efficiently with Bag of Words [Sivic’03, Nister’06, FABMAP, Galvez-Lopez’12 
(DBoW2)] 

First observation 

Second observation after a loop 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 
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drift appearing in monocular SLAM. From this work we take
the idea of loop closing with 7DoF pose graph optimization
and apply it to the Essential Graph defined in Section III-D

Strasdat et. al [7] used the front-end of PTAM, but per-
formed the tracking only in a local map retrieved from a covi-
sibility graph. They proposed a double window optimization
back-end that continuously performs BA in the inner window,
and pose graph in a limited-size outer window. However, loop
closing is only effective if the size of the outer window is
large enough to include the whole loop. In our system we
take advantage of the excellent ideas of using a local map
based on covisibility, and building the pose graph from the
covisibility graph, but apply them in a totally redesigned front-
end and back-end. Another difference is that, instead of using
specific features for loop detection (SURF), we perform the
place recognition on the same tracked and mapped features,
obtaining robust frame-rate relocalization and loop detection.

Pirker et. al [33] proposed CD-SLAM, a very complete
system including loop closing, relocalization, large scale oper-
ation and efforts to work on dynamic environments. However
map initialization is not mentioned. The lack of a public
implementation does not allow us to perform a comparison
of accuracy, robustness or large-scale capabilities.

The visual odometry of Song et al. [34] uses ORB features
for tracking and a temporal sliding window BA back-end. In
comparison our system is more general as they do not have
global relocalization, loop closing and do not reuse the map.
They are also using the known distance from the camera to
the ground to limit monocular scale drift.

Lim et. al [25], work published after we submitted our
preliminary version of this work [12], use also the same
features for tracking, mapping and loop detection. However
the choice of BRIEF limits the system to in-plane trajectories.
Their system only tracks points from the last keyframe so the
map is not reused if revisited (similar to visual odometry)
and has the problem of growing unbounded. We compare
qualitatively our results with this approach in section VIII-E.

The recent work of Engel et. al [10], known as LSD-
SLAM, is able to build large scale semi-dense maps, using
direct methods (i.e. optimization directly over image pixel
intensities) instead of bundle adjustment over features. Their
results are very impressive as the system is able to operate
in real time, without GPU acceleration, building a semi-dense
map, with more potential applications for robotics than the
sparse output generated by feature-based SLAM. Nevertheless
they still need features for loop detection and their camera
localization accuracy is significantly lower than in our system
and PTAM, as we show experimentally in Section VIII-B. This
surprising result is discussed in Section IX-B.

In a halfway between direct and feature-based methods is
the semi-direct visual odometry SVO of Forster et al. [22].
Without requiring to extract features in every frame they are
able to operate at high frame-rates obtaining impressive results
in quadracopters. However no loop detection is performed and
the current implementation is mainly thought for downward
looking cameras.

Finally we want to discuss about keyframe selection. All
visual SLAM works in the literature agree that running BA

Fig. 1. ORB-SLAM system overview, showing all the steps performed by
the tracking, local mapping and loop closing threads. The main components
of the place recognition module and the map are also shown.

with all the points and all the frames is not feasible. The
work of Strasdat et al. [31] showed that the most cost-
effective approach is to keep as much points as possible,
while keeping only non-redundant keyframes. The PTAM
approach was to insert keyframes very cautiously to avoid
an excessive growth of the computational complexity. This
restrictive keyframe insertion policy makes the tracking fail in
hard exploration conditions. Our survival of the fittest strategy
achieves unprecedented robustness in difficult scenarios by
inserting keyframes as quickly as possible, and removing later
the redundant ones, to avoid the extra cost.

III. SYSTEM OVERVIEW

A. Feature Choice
One of the main design ideas in our system is that the

same features used by the mapping and tracking are used
for place recognition to perform frame-rate relocalization and
loop detection. This makes our system efficient and avoids
the need to interpolate the depth of the recognition features
from near SLAM features as in previous works [6], [7]. We
requiere features that need for extraction much less than 33ms
per image, which excludes the popular SIFT (⇠ 300ms) [19],
SURF (⇠ 300ms) [18] or the recent A-KAZE (⇠ 100ms) [35].
To obtain general place recognition capabilities, we require
rotation invariance, which excludes BRIEF [16] and LDB [36].

We chose ORB [9], which are oriented multi-scale FAST
corners with a 256 bits descriptor associated. They are ex-
tremely fast to compute and match, while they have good
invariance to viewpoint. This allows to match them from wide
baselines, boosting the accuracy of BA. We already shown the
good performance of ORB for place recognition in [11]. While
our current implementation make use of ORB, the techniques
proposed are not restricted to these features.

B. Three Threads: Tracking, Local Mapping and Loop Closing
Our system, see an overview in Fig. 1, incorporates three

threads that run in parallel: tracking, local mapping and loop

R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, “ORB-SLAM: a Versatile and Accurate  
Monocular SLAM System” IEEE Trans. Robotics 2015.
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“Thread 2 - 
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drift appearing in monocular SLAM. From this work we take
the idea of loop closing with 7DoF pose graph optimization
and apply it to the Essential Graph defined in Section III-D

Strasdat et. al [7] used the front-end of PTAM, but per-
formed the tracking only in a local map retrieved from a covi-
sibility graph. They proposed a double window optimization
back-end that continuously performs BA in the inner window,
and pose graph in a limited-size outer window. However, loop
closing is only effective if the size of the outer window is
large enough to include the whole loop. In our system we
take advantage of the excellent ideas of using a local map
based on covisibility, and building the pose graph from the
covisibility graph, but apply them in a totally redesigned front-
end and back-end. Another difference is that, instead of using
specific features for loop detection (SURF), we perform the
place recognition on the same tracked and mapped features,
obtaining robust frame-rate relocalization and loop detection.

Pirker et. al [33] proposed CD-SLAM, a very complete
system including loop closing, relocalization, large scale oper-
ation and efforts to work on dynamic environments. However
map initialization is not mentioned. The lack of a public
implementation does not allow us to perform a comparison
of accuracy, robustness or large-scale capabilities.

The visual odometry of Song et al. [34] uses ORB features
for tracking and a temporal sliding window BA back-end. In
comparison our system is more general as they do not have
global relocalization, loop closing and do not reuse the map.
They are also using the known distance from the camera to
the ground to limit monocular scale drift.

Lim et. al [25], work published after we submitted our
preliminary version of this work [12], use also the same
features for tracking, mapping and loop detection. However
the choice of BRIEF limits the system to in-plane trajectories.
Their system only tracks points from the last keyframe so the
map is not reused if revisited (similar to visual odometry)
and has the problem of growing unbounded. We compare
qualitatively our results with this approach in section VIII-E.

The recent work of Engel et. al [10], known as LSD-
SLAM, is able to build large scale semi-dense maps, using
direct methods (i.e. optimization directly over image pixel
intensities) instead of bundle adjustment over features. Their
results are very impressive as the system is able to operate
in real time, without GPU acceleration, building a semi-dense
map, with more potential applications for robotics than the
sparse output generated by feature-based SLAM. Nevertheless
they still need features for loop detection and their camera
localization accuracy is significantly lower than in our system
and PTAM, as we show experimentally in Section VIII-B. This
surprising result is discussed in Section IX-B.

In a halfway between direct and feature-based methods is
the semi-direct visual odometry SVO of Forster et al. [22].
Without requiring to extract features in every frame they are
able to operate at high frame-rates obtaining impressive results
in quadracopters. However no loop detection is performed and
the current implementation is mainly thought for downward
looking cameras.

Finally we want to discuss about keyframe selection. All
visual SLAM works in the literature agree that running BA

Fig. 1. ORB-SLAM system overview, showing all the steps performed by
the tracking, local mapping and loop closing threads. The main components
of the place recognition module and the map are also shown.

with all the points and all the frames is not feasible. The
work of Strasdat et al. [31] showed that the most cost-
effective approach is to keep as much points as possible,
while keeping only non-redundant keyframes. The PTAM
approach was to insert keyframes very cautiously to avoid
an excessive growth of the computational complexity. This
restrictive keyframe insertion policy makes the tracking fail in
hard exploration conditions. Our survival of the fittest strategy
achieves unprecedented robustness in difficult scenarios by
inserting keyframes as quickly as possible, and removing later
the redundant ones, to avoid the extra cost.

III. SYSTEM OVERVIEW

A. Feature Choice
One of the main design ideas in our system is that the

same features used by the mapping and tracking are used
for place recognition to perform frame-rate relocalization and
loop detection. This makes our system efficient and avoids
the need to interpolate the depth of the recognition features
from near SLAM features as in previous works [6], [7]. We
requiere features that need for extraction much less than 33ms
per image, which excludes the popular SIFT (⇠ 300ms) [19],
SURF (⇠ 300ms) [18] or the recent A-KAZE (⇠ 100ms) [35].
To obtain general place recognition capabilities, we require
rotation invariance, which excludes BRIEF [16] and LDB [36].

We chose ORB [9], which are oriented multi-scale FAST
corners with a 256 bits descriptor associated. They are ex-
tremely fast to compute and match, while they have good
invariance to viewpoint. This allows to match them from wide
baselines, boosting the accuracy of BA. We already shown the
good performance of ORB for place recognition in [11]. While
our current implementation make use of ORB, the techniques
proposed are not restricted to these features.

B. Three Threads: Tracking, Local Mapping and Loop Closing
Our system, see an overview in Fig. 1, incorporates three

threads that run in parallel: tracking, local mapping and loop

R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, “ORB-SLAM: a Versatile and Accurate  
Monocular SLAM System” IEEE Trans. Robotics 2015.

“Thread 1 - Visual Odometry”

“Thread 2 - 
Local BA”

“Thread 3 - Loop Closure”



ORB SLAM
• Essentially “greatest hits” in terms of work in VSLAM.  
• Uses the same features (i.e. ORB) for,  

• Tracking 
• Mapping 
• Loop closure 

• Real-time, large scale operation.  
• Survival of the fittest for points and keyframes.  
• Further information can be found at,  

• http://webdiis.unizar.es/~raulmur/orbslam/ 
• Source code available under GPLv3.
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