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Reminder: SLAM
• Simultaneous Localization and Mapping. 
• On mobile interested primarily in Visual SLAM (VSLAM).  
• Sometimes called Mono SLAM if there is only one camera.  
• Can be viewed as an online SfM problem. 



Reminder: VO vs VSLAM vs SFM

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

SFM VSLAM VO 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



Reminder: Keyframe-based SLAM

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

Typical visual odometry pipeline used in many algorithms  
[Nister’04, PTAM’07, LIBVISO’08, LSD-SLAM’14, SVO’14, ORB-SLAM’15] 

Keyframe 1 Keyframe 2 

Initial pointcloud New triangulated points 

Current frame New keyframe 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



A Tale of Two Threads 

Real-Time Spherical Mosaicing using Whole Image Alignment 3

a cost function related to how well one reference image matches that of a warped
comparison image. The parameters of the warp define the dimensionality of this
space. By computing the derivative of the cost function with respect to the warp
parameters, the parameter space gradient can be ‘surfed’ to a minimum, which
may or may not be the global minimum.

Within our system, we make extensive use of the technique proposed by
Malis, named E�cient Second-order Minimisation (ESM) [11] which instead
finds the second order minimiser of the cost function while using only first or-
der terms. This provides stable convergence in fewer iterations than the Lucas-
Kanade method.

2 Method

Fig. 1. System overview showing separation of tracking and mapping.

Our algorithm is split into two tasks which run as parallel threads on a
multi-core PC: a) tracking from a known map, and b) global map maintenance
and optimisation (see Figure 1), an approach inspired by PTAM [7]. In the
first ‘tracking’ thread, we use the direct, whole image second order optimisation
method ESM of Malis [11], with further contributions from Mei et al. [12], which
we implement on graphics hardware for high-quality real-time tracking relative
to our map. In the second parallel thread, we run a global optimisation procedure
also based on ESM which adjusts the estimated orientations of all keyframes of
our map and camera intrinsics simultaneously. This allows us to produce globally
consistent mosaics in real-time. We remove radial distortion from all live frames
as they enter our system, and deal only with perspective images from then on.
We use a third party tool to establish the distortion parameters. Additionally, we
descrive an automatic method for relocalisation if tracking should fail, allowing
the current mosaic to be re-joined without corruption.

f
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Adapted from S. Lovegrove & A. J. Davison “Real-Time Spherical Mosaicing using Whole 
Image Alignment”, ECCV 2010. 



Example - ORB SLAM
IEEE TRANSACTIONS ON ROBOTICS 3

drift appearing in monocular SLAM. From this work we take
the idea of loop closing with 7DoF pose graph optimization
and apply it to the Essential Graph defined in Section III-D

Strasdat et. al [7] used the front-end of PTAM, but per-
formed the tracking only in a local map retrieved from a covi-
sibility graph. They proposed a double window optimization
back-end that continuously performs BA in the inner window,
and pose graph in a limited-size outer window. However, loop
closing is only effective if the size of the outer window is
large enough to include the whole loop. In our system we
take advantage of the excellent ideas of using a local map
based on covisibility, and building the pose graph from the
covisibility graph, but apply them in a totally redesigned front-
end and back-end. Another difference is that, instead of using
specific features for loop detection (SURF), we perform the
place recognition on the same tracked and mapped features,
obtaining robust frame-rate relocalization and loop detection.

Pirker et. al [33] proposed CD-SLAM, a very complete
system including loop closing, relocalization, large scale oper-
ation and efforts to work on dynamic environments. However
map initialization is not mentioned. The lack of a public
implementation does not allow us to perform a comparison
of accuracy, robustness or large-scale capabilities.

The visual odometry of Song et al. [34] uses ORB features
for tracking and a temporal sliding window BA back-end. In
comparison our system is more general as they do not have
global relocalization, loop closing and do not reuse the map.
They are also using the known distance from the camera to
the ground to limit monocular scale drift.

Lim et. al [25], work published after we submitted our
preliminary version of this work [12], use also the same
features for tracking, mapping and loop detection. However
the choice of BRIEF limits the system to in-plane trajectories.
Their system only tracks points from the last keyframe so the
map is not reused if revisited (similar to visual odometry)
and has the problem of growing unbounded. We compare
qualitatively our results with this approach in section VIII-E.

The recent work of Engel et. al [10], known as LSD-
SLAM, is able to build large scale semi-dense maps, using
direct methods (i.e. optimization directly over image pixel
intensities) instead of bundle adjustment over features. Their
results are very impressive as the system is able to operate
in real time, without GPU acceleration, building a semi-dense
map, with more potential applications for robotics than the
sparse output generated by feature-based SLAM. Nevertheless
they still need features for loop detection and their camera
localization accuracy is significantly lower than in our system
and PTAM, as we show experimentally in Section VIII-B. This
surprising result is discussed in Section IX-B.

In a halfway between direct and feature-based methods is
the semi-direct visual odometry SVO of Forster et al. [22].
Without requiring to extract features in every frame they are
able to operate at high frame-rates obtaining impressive results
in quadracopters. However no loop detection is performed and
the current implementation is mainly thought for downward
looking cameras.

Finally we want to discuss about keyframe selection. All
visual SLAM works in the literature agree that running BA

Fig. 1. ORB-SLAM system overview, showing all the steps performed by
the tracking, local mapping and loop closing threads. The main components
of the place recognition module and the map are also shown.

with all the points and all the frames is not feasible. The
work of Strasdat et al. [31] showed that the most cost-
effective approach is to keep as much points as possible,
while keeping only non-redundant keyframes. The PTAM
approach was to insert keyframes very cautiously to avoid
an excessive growth of the computational complexity. This
restrictive keyframe insertion policy makes the tracking fail in
hard exploration conditions. Our survival of the fittest strategy
achieves unprecedented robustness in difficult scenarios by
inserting keyframes as quickly as possible, and removing later
the redundant ones, to avoid the extra cost.

III. SYSTEM OVERVIEW

A. Feature Choice
One of the main design ideas in our system is that the

same features used by the mapping and tracking are used
for place recognition to perform frame-rate relocalization and
loop detection. This makes our system efficient and avoids
the need to interpolate the depth of the recognition features
from near SLAM features as in previous works [6], [7]. We
requiere features that need for extraction much less than 33ms
per image, which excludes the popular SIFT (⇠ 300ms) [19],
SURF (⇠ 300ms) [18] or the recent A-KAZE (⇠ 100ms) [35].
To obtain general place recognition capabilities, we require
rotation invariance, which excludes BRIEF [16] and LDB [36].

We chose ORB [9], which are oriented multi-scale FAST
corners with a 256 bits descriptor associated. They are ex-
tremely fast to compute and match, while they have good
invariance to viewpoint. This allows to match them from wide
baselines, boosting the accuracy of BA. We already shown the
good performance of ORB for place recognition in [11]. While
our current implementation make use of ORB, the techniques
proposed are not restricted to these features.

B. Three Threads: Tracking, Local Mapping and Loop Closing
Our system, see an overview in Fig. 1, incorporates three

threads that run in parallel: tracking, local mapping and loop

R. Mur-Artal, J. M. M. Montiel, J. D. Tardos, “ORB-SLAM: a Versatile and Accurate  
Monocular SLAM System” IEEE Trans. Robotics 2015.

“Thread 1 - Visual Odometry”

“Thread 2 - 
Local BA”



Today

• Direct vs. Feature based methods  

• Dense SLAM  

• Semi-Dense SLAM
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ECCV 1999



Feature-Based Methods



Feature-Based Methods

Image is reduced to a sparse set of keypoints
Usually matched with feature descriptors



Feature-Based Advantages

Vanishing point

Easier transition from 
images to geometry

Wide-baseline matching

Mikolajczyk, 2007

Illumination 
invariance

Mikolajczyk, 2007



Feature-Based Advantages

Vanishing point
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Mikolajczyk, 2007
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Mikolajczyk, 2007

Using invariant descriptors



Feature-Based Challenges

Direct Method 
       (ours)

      Feature-Based Method 
       (ORB+RANSAC)

• Creates only a sparse map of 
the world.  

• Does not sample across all 
available image data - edges & 
weak intensities.  

• Needs high-resolution camera 
mode (bad for efficiency and 
battery life). 
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Today

• Direct vs. Feature based methods  

• Dense SLAM  

• Semi-Dense SLAM
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Reminder: Warp Functions

“Source”

“Template”



Our goal is to find the warp parameter vector    !

W(x;p)
x

W(x;p) = warping function such that x

0
=W(x;p)

p = parameter vector describing warp

x = coordinate in template [x, y]

T

x

0
= corresponding coordinate in source [x

0
, y

0
]

T

p

Reminder: Warp Functions

x

0

“Source”

“Template”



Review: Pinhole Camera

Real camera image  
is inverted

Instead model impossible but more convenient 
virtual image

Adapted from: Computer vision: models, learning and inference.  Simon J.D. Prince 



First camera:

Second camera:

Substituting:

Relating Points between Views

Adapted from: Computer vision: models, learning and inference.  Simon J.D. Prince 



Pinhole Warp Function

• One can represent the relationship of points between views of 
pinhole cameras as a warp function, 

W(x;✓,�) = ⇡(�⌦x̃+ ⌧ )
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Pinhole Warp Function

• One can represent the relationship of points between views of 
pinhole cameras as a warp function, 
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Photometric Relationship

• We can employ this warp function to now express the problem as, 

How do we estimate the relative motion 𝑇𝑘 ? 

Image 𝐼𝑘−1 Image 𝐼𝑘 

𝑇𝑘 

       “An Invitation to 3D Vision”, Ma, Soatto, Kosecka, Sastry, Springer, 2003 

𝑇𝑘 

T (xn) = I(W{xn;✓f ,�n})

T If

✓f

�nx̃n

“keyframe template”
“f-th image”



Linearizing the Image for Pose

Baker, Simon, and Iain Matthews. "Equivalence and efficiency of image alignment algorithms." CVPR 2001.

⇡ If (W{xn;✓f ,�n}) +A

f
n�✓f

T (xn) = If (W{xn;✓f ��✓,�n})



Linearizing the Image for Pose

Baker, Simon, and Iain Matthews. "Equivalence and efficiency of image alignment algorithms." CVPR 2001.

⇡ If (W{xn;✓f ,�n}) +A

f
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T (xn) = If (W{xn;✓f ��✓,�n})



Direct Camera Tracking

• Assuming known depths                  ,{�n}Nn=1

argmin
�✓f

NX

n=1
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How do we estimate the relative motion 𝑇𝑘 ? 

Image 𝐼𝑘−1 Image 𝐼𝑘 

𝑇𝑘 

       “An Invitation to 3D Vision”, Ma, Soatto, Kosecka, Sastry, Springer, 2003 
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Direct Camera Tracking

• Most methods employ a variant of the Lucas-Kanade algorithm for 
estimating camera pose.  

• Engel et al. demonstrated using a “dense” number of points does not 
improve the performance of camera tracking (i.e pose estimation). 

• Advantage of density stems mainly from the map estimation.  

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. arXiv preprint arXiv:1607.02565, 2016. 
J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular slam. In European Conference on Computer Vision, 
pages 834–849. Springer, 2014.



Direct Camera Tracking

• Most methods employ a variant of the Lucas-Kanade algorithm for 
estimating camera pose.  

• Engel et al. demonstrated using a “dense” number of points does not 
improve the performance of camera tracking (i.e pose estimation). 

• Advantage of density stems mainly from the map estimation.  

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. arXiv preprint arXiv:1607.02565, 2016. 
J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular slam. In European Conference on Computer Vision, 
pages 834–849. Springer, 2014.

How do we update the depths?



Direct Map Estimation

• Assuming known pose parameters                , 

• Naively we could solve for the depths independently, 

{✓f}Ff=1

C(x,�) = 1

F

FX

f=1

||T (x)� If (W{x;✓f ,�})||1

R. A. Newcombe, S. J. Lovegrove and A. J. Davison "DTAM: Dense Tracking and Mapping in Real-Time”, ICCV 2011.  

�n = argmin
�

C(xn,�)C(x,�)

C(x,�)



DTAM

• Newcombe et al. proposed  - Dense Tracking and Mapping.   
• Attempted to substitute the feature based tracking and mapping 

modules of traditional VSLAM (e.g. PTAM) for dense methods.

R. A. Newcombe, S. J. Lovegrove and A. J. Davison "DTAM: Dense Tracking and Mapping in Real-Time”, ICCV 2011.  

robustly and accurately enabled by dense methods, where
matching at every pixel is supported by the totality of data
across an image and model.

2. Method

The overall structure of our algorithm is straightforward.
Given a dense model of the scene, we use dense whole im-
age alignment against that model to track camera motion
at frame-rate. And tightly interleaved with this, given im-
ages from tracked camera poses, we update and expand the
model by building and refining dense textured depth maps.
Once bootstrapped, the system is fully self-supporting and
no feature-based skeleton or tracking is required.

2.1. Preliminaries

We refer to the pose of a camera c with respect to the world
frame of reference w as

T

wc

=

✓

R

wc

c

w

0

T

1

◆

, (1)

where T

wc

2 SE(3) is the matrix describing point trans-
fer between the camera’s frame of reference and that of the
world, such that x

w

= T

wc

x

c

. R

wc

2 SO(3) is the ro-
tation matrix describing directional transfer, and c

w

is the
location of the optic center of camera c in the frame of
reference w. Our camera has fixed and pre-calibrated in-
trinsic matrix K and all images are pre-warped to remove
radial distortion. We describe perspective projection of a
3D point x

c

= (x, y, z)

> including dehomogenisation by
⇡(x

c

) = (x/z, y/z)

>.

Our dense model is composed of overlapping keyframes. Il-
lustrated in Figure 1, a keyframe r with world-camera frame
transform T

rw

, contains an inverse depth map ⇠
r

: ⌦ ! R
and RGB reference image I

r

: ⌦ ! R3 where ⌦ ⇢ R2

is the image domain. For a pixel u := (u, v)

> 2 ⌦,
we can back-project an inverse depth value d = ⇠(u) to
a 3D point x = ⇡

�1
(u, d) where ⇡

�1
(u, d) =

1
d

K

�1
u̇.

The dot notation is used to define the homogeneous vector
u̇ := (u, v, 1)

>.

2.2. Dense Mapping

We follow a global energy minimisation framework to es-
timate ⇠

r

iteratively from any number of short baseline
frames m 2 I(r), where our energy is the sum of a photo-
metric error data term and robust spatial regularisation term.
We make each keyframe available for use in pose estimation
after initial solution convergence.

We now define a projective photometric cost volume C
r

for
the keyframe as illustrated in Figure 1. A row C

r

(u) in

Figure 1. A keyframe r consists of a reference image I
r

with pose
T

rw

and data cost volume C
r

. Each pixel of the reference frame
u
r

has an associated row of entries C
r

(u) (shown in red) that
store the average photometric error or cost C

r

(u, d) computed
for each inverse depth d 2 D in the inverse depth range D =
[⇠

min

, ⇠
max

]. We use tens to hundreds of video frames indexed as
m 2 I(r), where I(r) is the set of frames nearby and overlapping
r, to compute the values stored in the cost volume.

the cost volume (called a disparity space image in stereo
matching [14], and generalised more recently in [10] for
any discrete per pixel labelling) stores the accumulated pho-
tometric error as a function of inverse depth d. The aver-
age photometric error C

r

(u, d) is computed by projecting a
point in the volume into each of the overlapping images and
summing the L1 norm of the individual photometric errors
obtained:

C

r

(u, d) =
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|I(r)|
X
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where the photometric error for each overlapping image is:
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Under the brightness constancy assumption, we hope for
⇢ to be smallest at the inverse depth corresponding to the
true surface. Generally, this does not hold for images cap-
tured over a wide baseline and even for the same viewpoint
when lighting changes significantly. Here, rather than using
a patch-based normalised score, or pre-processing the input
data to increase illumination invariance over wide baselines,
we take the opposite approach and show the advantage of
reconstruction from a large number of video frames taken
from very close viewpoints where very high quality match-
ing is possible. We are particularly interested in real-time
applications where a robot or human is in the reconstruc-
tion loop, and so could purposefully restrict the collection
of images to within a relatively narrow region.

In Figure 2, we show plots for three reference pixels where
the function ⇢ (Equation 3) has been computed and aver-
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T
IF

f = 1 : F

x

-1

-1



DTAM

• Newcombe et al. proposed  - Dense Tracking and Mapping.   
• Attempted to substitute the feature based tracking and mapping 

modules of traditional VSLAM (e.g. PTAM) for dense methods.

R. A. Newcombe, S. J. Lovegrove and A. J. Davison "DTAM: Dense Tracking and Mapping in Real-Time”, ICCV 2011.  

robustly and accurately enabled by dense methods, where
matching at every pixel is supported by the totality of data
across an image and model.

2. Method

The overall structure of our algorithm is straightforward.
Given a dense model of the scene, we use dense whole im-
age alignment against that model to track camera motion
at frame-rate. And tightly interleaved with this, given im-
ages from tracked camera poses, we update and expand the
model by building and refining dense textured depth maps.
Once bootstrapped, the system is fully self-supporting and
no feature-based skeleton or tracking is required.
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Our dense model is composed of overlapping keyframes. Il-
lustrated in Figure 1, a keyframe r with world-camera frame
transform T
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, contains an inverse depth map ⇠
r
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and RGB reference image I
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The dot notation is used to define the homogeneous vector
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2.2. Dense Mapping

We follow a global energy minimisation framework to es-
timate ⇠

r

iteratively from any number of short baseline
frames m 2 I(r), where our energy is the sum of a photo-
metric error data term and robust spatial regularisation term.
We make each keyframe available for use in pose estimation
after initial solution convergence.

We now define a projective photometric cost volume C
r

for
the keyframe as illustrated in Figure 1. A row C

r

(u) in

Figure 1. A keyframe r consists of a reference image I
r

with pose
T
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and data cost volume C
r

. Each pixel of the reference frame
u
r

has an associated row of entries C
r

(u) (shown in red) that
store the average photometric error or cost C

r

(u, d) computed
for each inverse depth d 2 D in the inverse depth range D =
[⇠
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, ⇠
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]. We use tens to hundreds of video frames indexed as
m 2 I(r), where I(r) is the set of frames nearby and overlapping
r, to compute the values stored in the cost volume.

the cost volume (called a disparity space image in stereo
matching [14], and generalised more recently in [10] for
any discrete per pixel labelling) stores the accumulated pho-
tometric error as a function of inverse depth d. The aver-
age photometric error C

r

(u, d) is computed by projecting a
point in the volume into each of the overlapping images and
summing the L1 norm of the individual photometric errors
obtained:
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Under the brightness constancy assumption, we hope for
⇢ to be smallest at the inverse depth corresponding to the
true surface. Generally, this does not hold for images cap-
tured over a wide baseline and even for the same viewpoint
when lighting changes significantly. Here, rather than using
a patch-based normalised score, or pre-processing the input
data to increase illumination invariance over wide baselines,
we take the opposite approach and show the advantage of
reconstruction from a large number of video frames taken
from very close viewpoints where very high quality match-
ing is possible. We are particularly interested in real-time
applications where a robot or human is in the reconstruc-
tion loop, and so could purposefully restrict the collection
of images to within a relatively narrow region.

In Figure 2, we show plots for three reference pixels where
the function ⇢ (Equation 3) has been computed and aver-
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“Sample across 
inverse depths”



DTAM - Example

Figure 2. Plots for the single pixel photometric functions ⇢(u) and the resulting total data cost row C(u) are shown for three example
pixels in the reference frame, chosen in regions of differing discernibility. Pixel (a) is in a textureless region and not well localisable; (b)
is within a strongly textured region where a point feature might be detected; and (c) is in a region of linear repeating texture. While the
individual costs exhibit many local minima, the total cost shows clear a clear minimum in all except nearly homogeneous regions.

aged to form C(u) (Equation 2). It is clear that while an
individual data term ⇢ can have many minima, the total cost
generally has very few and often a clear minimum. Each
single ⇢ is a simple two view stereo data term, and as such
has no useful information for scene regions which are oc-
cluded in the second view. As noted in [13], while increas-
ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while
increasing the chance that a region has at least one useful
non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted
from the cost volume by computing arg min

d

C(u, d) for
each pixel u in the reference frame. It is clear that the esti-
mates obtained in featureless regions are prone to false min-
ima. Fortunately, the sum of individual photometric errors
in these regions leads to a flatter total cost. We will there-
fore seek an inverse depth map which minimises an energy
functional comprising the photometric error cost as a data
term and a regularisation term that penalises deviation from
a spatially smooth inverse depth map solution.

2.2.1 Regularised Cost

We assume that the inverse depth solution being recon-
structed consists of regions that vary smoothly together with
discontinuities due to occlusion boundaries. We use a regu-
lariser comprising a weighted Huber norm over the gradient
of the inverse depth map, g(u)kr⇠(u)k

✏

. The Huber norm
is a composite of two convex functions:

kxk
✏

=

(

kxk2
2

2✏ if kxk2  ✏

kxk1 � ✏

2 otherwise
(4)

Within kr⇠
r

k2  ✏ an L

2
2 norm is used, promoting smooth

reconstruction, while otherwise the norm is L1 forming the
total variation (TV) regulariser which allows discontinu-
ities to form at depth edges. More specifically, TV allows
discontinuities to form without the need for a threshold-
specific non-convex norm that would depend on the recon-
struction scale which is not available in a monocular setting.

In this case ✏ is set to a very small value ⇡ 1.0e

�4 to reduce
the stair-casing effect obtained by the pure TV regulariser.
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reference image, the per pixel weight g(u) we use is:

g(u) = e

�↵krIr(u)k�
2
, (5)
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region boundaries. The resulting energy functional there-
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In many optical flow and variational depth map methods,
a convex approximation to the data term can be obtained
by linearising the cost volume and solving the resulting
approximation iteratively within a coarse-to-fine warping
scheme that can lead to loss of reconstruction detail. If the
linearisation is performed directly in image space as in [13],
all images used in the data term must be kept increasing
computational cost as more overlapping images are used.
Instead, following the large displacement optic flow method
of [12] we approximate the energy functional by coupling
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individual costs exhibit many local minima, the total cost shows clear a clear minimum in all except nearly homogeneous regions.

aged to form C(u) (Equation 2). It is clear that while an
individual data term ⇢ can have many minima, the total cost
generally has very few and often a clear minimum. Each
single ⇢ is a simple two view stereo data term, and as such
has no useful information for scene regions which are oc-
cluded in the second view. As noted in [13], while increas-
ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while
increasing the chance that a region has at least one useful
non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted
from the cost volume by computing arg min

d

C(u, d) for
each pixel u in the reference frame. It is clear that the esti-
mates obtained in featureless regions are prone to false min-
ima. Fortunately, the sum of individual photometric errors
in these regions leads to a flatter total cost. We will there-
fore seek an inverse depth map which minimises an energy
functional comprising the photometric error cost as a data
term and a regularisation term that penalises deviation from
a spatially smooth inverse depth map solution.

2.2.1 Regularised Cost

We assume that the inverse depth solution being recon-
structed consists of regions that vary smoothly together with
discontinuities due to occlusion boundaries. We use a regu-
lariser comprising a weighted Huber norm over the gradient
of the inverse depth map, g(u)kr⇠(u)k

✏

. The Huber norm
is a composite of two convex functions:

kxk
✏

=

(

kxk2
2

2✏ if kxk2  ✏

kxk1 � ✏

2 otherwise
(4)

Within kr⇠
r

k2  ✏ an L

2
2 norm is used, promoting smooth

reconstruction, while otherwise the norm is L1 forming the
total variation (TV) regulariser which allows discontinu-
ities to form at depth edges. More specifically, TV allows
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In many optical flow and variational depth map methods,
a convex approximation to the data term can be obtained
by linearising the cost volume and solving the resulting
approximation iteratively within a coarse-to-fine warping
scheme that can lead to loss of reconstruction detail. If the
linearisation is performed directly in image space as in [13],
all images used in the data term must be kept increasing
computational cost as more overlapping images are used.
Instead, following the large displacement optic flow method
of [12] we approximate the energy functional by coupling
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aged to form C(u) (Equation 2). It is clear that while an
individual data term ⇢ can have many minima, the total cost
generally has very few and often a clear minimum. Each
single ⇢ is a simple two view stereo data term, and as such
has no useful information for scene regions which are oc-
cluded in the second view. As noted in [13], while increas-
ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while
increasing the chance that a region has at least one useful
non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted
from the cost volume by computing arg min

d

C(u, d) for
each pixel u in the reference frame. It is clear that the esti-
mates obtained in featureless regions are prone to false min-
ima. Fortunately, the sum of individual photometric errors
in these regions leads to a flatter total cost. We will there-
fore seek an inverse depth map which minimises an energy
functional comprising the photometric error cost as a data
term and a regularisation term that penalises deviation from
a spatially smooth inverse depth map solution.

2.2.1 Regularised Cost

We assume that the inverse depth solution being recon-
structed consists of regions that vary smoothly together with
discontinuities due to occlusion boundaries. We use a regu-
lariser comprising a weighted Huber norm over the gradient
of the inverse depth map, g(u)kr⇠(u)k
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ities to form at depth edges. More specifically, TV allows
discontinuities to form without the need for a threshold-
specific non-convex norm that would depend on the recon-
struction scale which is not available in a monocular setting.

In this case ✏ is set to a very small value ⇡ 1.0e

�4 to reduce
the stair-casing effect obtained by the pure TV regulariser.
As depth discontinuities often coincide with edges in the
reference image, the per pixel weight g(u) we use is:
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reducing the regularisation strength where the edge mag-
nitude is high, thereby limiting solution smoothing across
region boundaries. The resulting energy functional there-
fore contains a non-convex photometric error data term and
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In many optical flow and variational depth map methods,
a convex approximation to the data term can be obtained
by linearising the cost volume and solving the resulting
approximation iteratively within a coarse-to-fine warping
scheme that can lead to loss of reconstruction detail. If the
linearisation is performed directly in image space as in [13],
all images used in the data term must be kept increasing
computational cost as more overlapping images are used.
Instead, following the large displacement optic flow method
of [12] we approximate the energy functional by coupling
the data and regularisation terms through an auxiliary vari-
able ↵ : ⌦ ! R,
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ing ⇠ = ↵ as ✓ ! 0, resulting in the original energy
(6). As a function of ⇠, the convex sum g(u)kr⇠(u)k
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+
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denoising model term [11], and can be efficiently opti-
mised using a primal-dual approach [1][16][3]. Also, al-
though still non-convex in the auxiliary variable ↵, each
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Figure 2. Plots for the single pixel photometric functions ⇢(u) and the resulting total data cost row C(u) are shown for three example
pixels in the reference frame, chosen in regions of differing discernibility. Pixel (a) is in a textureless region and not well localisable; (b)
is within a strongly textured region where a point feature might be detected; and (c) is in a region of linear repeating texture. While the
individual costs exhibit many local minima, the total cost shows clear a clear minimum in all except nearly homogeneous regions.

aged to form C(u) (Equation 2). It is clear that while an
individual data term ⇢ can have many minima, the total cost
generally has very few and often a clear minimum. Each
single ⇢ is a simple two view stereo data term, and as such
has no useful information for scene regions which are oc-
cluded in the second view. As noted in [13], while increas-
ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while
increasing the chance that a region has at least one useful
non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted
from the cost volume by computing arg min

d

C(u, d) for
each pixel u in the reference frame. It is clear that the esti-
mates obtained in featureless regions are prone to false min-
ima. Fortunately, the sum of individual photometric errors
in these regions leads to a flatter total cost. We will there-
fore seek an inverse depth map which minimises an energy
functional comprising the photometric error cost as a data
term and a regularisation term that penalises deviation from
a spatially smooth inverse depth map solution.

2.2.1 Regularised Cost

We assume that the inverse depth solution being recon-
structed consists of regions that vary smoothly together with
discontinuities due to occlusion boundaries. We use a regu-
lariser comprising a weighted Huber norm over the gradient
of the inverse depth map, g(u)kr⇠(u)k
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reconstruction, while otherwise the norm is L1 forming the
total variation (TV) regulariser which allows discontinu-
ities to form at depth edges. More specifically, TV allows
discontinuities to form without the need for a threshold-
specific non-convex norm that would depend on the recon-
struction scale which is not available in a monocular setting.

In this case ✏ is set to a very small value ⇡ 1.0e

�4 to reduce
the stair-casing effect obtained by the pure TV regulariser.
As depth discontinuities often coincide with edges in the
reference image, the per pixel weight g(u) we use is:

g(u) = e
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2
, (5)

reducing the regularisation strength where the edge mag-
nitude is high, thereby limiting solution smoothing across
region boundaries. The resulting energy functional there-
fore contains a non-convex photometric error data term and
a convex regulariser:
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In many optical flow and variational depth map methods,
a convex approximation to the data term can be obtained
by linearising the cost volume and solving the resulting
approximation iteratively within a coarse-to-fine warping
scheme that can lead to loss of reconstruction detail. If the
linearisation is performed directly in image space as in [13],
all images used in the data term must be kept increasing
computational cost as more overlapping images are used.
Instead, following the large displacement optic flow method
of [12] we approximate the energy functional by coupling
the data and regularisation terms through an auxiliary vari-
able ↵ : ⌦ ! R,
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mised using a primal-dual approach [1][16][3]. Also, al-
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Figure 2. Plots for the single pixel photometric functions ⇢(u) and the resulting total data cost row C(u) are shown for three example
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is within a strongly textured region where a point feature might be detected; and (c) is in a region of linear repeating texture. While the
individual costs exhibit many local minima, the total cost shows clear a clear minimum in all except nearly homogeneous regions.

aged to form C(u) (Equation 2). It is clear that while an
individual data term ⇢ can have many minima, the total cost
generally has very few and often a clear minimum. Each
single ⇢ is a simple two view stereo data term, and as such
has no useful information for scene regions which are oc-
cluded in the second view. As noted in [13], while increas-
ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while
increasing the chance that a region has at least one useful
non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted
from the cost volume by computing arg min

d

C(u, d) for
each pixel u in the reference frame. It is clear that the esti-
mates obtained in featureless regions are prone to false min-
ima. Fortunately, the sum of individual photometric errors
in these regions leads to a flatter total cost. We will there-
fore seek an inverse depth map which minimises an energy
functional comprising the photometric error cost as a data
term and a regularisation term that penalises deviation from
a spatially smooth inverse depth map solution.

2.2.1 Regularised Cost

We assume that the inverse depth solution being recon-
structed consists of regions that vary smoothly together with
discontinuities due to occlusion boundaries. We use a regu-
lariser comprising a weighted Huber norm over the gradient
of the inverse depth map, g(u)kr⇠(u)k
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total variation (TV) regulariser which allows discontinu-
ities to form at depth edges. More specifically, TV allows
discontinuities to form without the need for a threshold-
specific non-convex norm that would depend on the recon-
struction scale which is not available in a monocular setting.

In this case ✏ is set to a very small value ⇡ 1.0e

�4 to reduce
the stair-casing effect obtained by the pure TV regulariser.
As depth discontinuities often coincide with edges in the
reference image, the per pixel weight g(u) we use is:
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reducing the regularisation strength where the edge mag-
nitude is high, thereby limiting solution smoothing across
region boundaries. The resulting energy functional there-
fore contains a non-convex photometric error data term and
a convex regulariser:
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In many optical flow and variational depth map methods,
a convex approximation to the data term can be obtained
by linearising the cost volume and solving the resulting
approximation iteratively within a coarse-to-fine warping
scheme that can lead to loss of reconstruction detail. If the
linearisation is performed directly in image space as in [13],
all images used in the data term must be kept increasing
computational cost as more overlapping images are used.
Instead, following the large displacement optic flow method
of [12] we approximate the energy functional by coupling
the data and regularisation terms through an auxiliary vari-
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aged to form C(u) (Equation 2). It is clear that while an
individual data term ⇢ can have many minima, the total cost
generally has very few and often a clear minimum. Each
single ⇢ is a simple two view stereo data term, and as such
has no useful information for scene regions which are oc-
cluded in the second view. As noted in [13], while increas-
ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while
increasing the chance that a region has at least one useful
non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted
from the cost volume by computing arg min

d

C(u, d) for
each pixel u in the reference frame. It is clear that the esti-
mates obtained in featureless regions are prone to false min-
ima. Fortunately, the sum of individual photometric errors
in these regions leads to a flatter total cost. We will there-
fore seek an inverse depth map which minimises an energy
functional comprising the photometric error cost as a data
term and a regularisation term that penalises deviation from
a spatially smooth inverse depth map solution.

2.2.1 Regularised Cost

We assume that the inverse depth solution being recon-
structed consists of regions that vary smoothly together with
discontinuities due to occlusion boundaries. We use a regu-
lariser comprising a weighted Huber norm over the gradient
of the inverse depth map, g(u)kr⇠(u)k
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ities to form at depth edges. More specifically, TV allows
discontinuities to form without the need for a threshold-
specific non-convex norm that would depend on the recon-
struction scale which is not available in a monocular setting.

In this case ✏ is set to a very small value ⇡ 1.0e

�4 to reduce
the stair-casing effect obtained by the pure TV regulariser.
As depth discontinuities often coincide with edges in the
reference image, the per pixel weight g(u) we use is:
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reducing the regularisation strength where the edge mag-
nitude is high, thereby limiting solution smoothing across
region boundaries. The resulting energy functional there-
fore contains a non-convex photometric error data term and
a convex regulariser:
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In many optical flow and variational depth map methods,
a convex approximation to the data term can be obtained
by linearising the cost volume and solving the resulting
approximation iteratively within a coarse-to-fine warping
scheme that can lead to loss of reconstruction detail. If the
linearisation is performed directly in image space as in [13],
all images used in the data term must be kept increasing
computational cost as more overlapping images are used.
Instead, following the large displacement optic flow method
of [12] we approximate the energy functional by coupling
the data and regularisation terms through an auxiliary vari-
able ↵ : ⌦ ! R,
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Figure 2. Plots for the single pixel photometric functions ⇢(u) and the resulting total data cost row C(u) are shown for three example
pixels in the reference frame, chosen in regions of differing discernibility. Pixel (a) is in a textureless region and not well localisable; (b)
is within a strongly textured region where a point feature might be detected; and (c) is in a region of linear repeating texture. While the
individual costs exhibit many local minima, the total cost shows clear a clear minimum in all except nearly homogeneous regions.

aged to form C(u) (Equation 2). It is clear that while an
individual data term ⇢ can have many minima, the total cost
generally has very few and often a clear minimum. Each
single ⇢ is a simple two view stereo data term, and as such
has no useful information for scene regions which are oc-
cluded in the second view. As noted in [13], while increas-
ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while
increasing the chance that a region has at least one useful
non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted
from the cost volume by computing arg min

d

C(u, d) for
each pixel u in the reference frame. It is clear that the esti-
mates obtained in featureless regions are prone to false min-
ima. Fortunately, the sum of individual photometric errors
in these regions leads to a flatter total cost. We will there-
fore seek an inverse depth map which minimises an energy
functional comprising the photometric error cost as a data
term and a regularisation term that penalises deviation from
a spatially smooth inverse depth map solution.

2.2.1 Regularised Cost

We assume that the inverse depth solution being recon-
structed consists of regions that vary smoothly together with
discontinuities due to occlusion boundaries. We use a regu-
lariser comprising a weighted Huber norm over the gradient
of the inverse depth map, g(u)kr⇠(u)k
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2 norm is used, promoting smooth

reconstruction, while otherwise the norm is L1 forming the
total variation (TV) regulariser which allows discontinu-
ities to form at depth edges. More specifically, TV allows
discontinuities to form without the need for a threshold-
specific non-convex norm that would depend on the recon-
struction scale which is not available in a monocular setting.

In this case ✏ is set to a very small value ⇡ 1.0e

�4 to reduce
the stair-casing effect obtained by the pure TV regulariser.
As depth discontinuities often coincide with edges in the
reference image, the per pixel weight g(u) we use is:

g(u) = e
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2
, (5)

reducing the regularisation strength where the edge mag-
nitude is high, thereby limiting solution smoothing across
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In many optical flow and variational depth map methods,
a convex approximation to the data term can be obtained
by linearising the cost volume and solving the resulting
approximation iteratively within a coarse-to-fine warping
scheme that can lead to loss of reconstruction detail. If the
linearisation is performed directly in image space as in [13],
all images used in the data term must be kept increasing
computational cost as more overlapping images are used.
Instead, following the large displacement optic flow method
of [12] we approximate the energy functional by coupling
the data and regularisation terms through an auxiliary vari-
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denoising model term [11], and can be efficiently opti-
mised using a primal-dual approach [1][16][3]. Also, al-
though still non-convex in the auxiliary variable ↵, each

Figure 2. Plots for the single pixel photometric functions ⇢(u) and the resulting total data cost row C(u) are shown for three example
pixels in the reference frame, chosen in regions of differing discernibility. Pixel (a) is in a textureless region and not well localisable; (b)
is within a strongly textured region where a point feature might be detected; and (c) is in a region of linear repeating texture. While the
individual costs exhibit many local minima, the total cost shows clear a clear minimum in all except nearly homogeneous regions.

aged to form C(u) (Equation 2). It is clear that while an
individual data term ⇢ can have many minima, the total cost
generally has very few and often a clear minimum. Each
single ⇢ is a simple two view stereo data term, and as such
has no useful information for scene regions which are oc-
cluded in the second view. As noted in [13], while increas-
ing signal to noise ratio, using many views with a robust L1

norm enables the occlusions to be treated as outliers, while
increasing the chance that a region has at least one useful
non occluding data term.

Shown in Figure 3, an inverse depth map can be extracted
from the cost volume by computing arg min
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C(u, d) for
each pixel u in the reference frame. It is clear that the esti-
mates obtained in featureless regions are prone to false min-
ima. Fortunately, the sum of individual photometric errors
in these regions leads to a flatter total cost. We will there-
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term and a regularisation term that penalises deviation from
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DTAM - Geometric Prior

• Newcombe et al. proposed the employment of a geometric prior on 
depths, 
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LSD SLAM
• A drawback to DTAM is that the depth estimation is a volumetric 

method and therefore requires state of the art GPU to run in real-
time.  

• Engel et al. recently proposed Large-Scale Direct Monocular SLAM 
that circumvents this limitation. 6 J. Engel and T. Schöps and D. Cremers

Tracking Depth Map Estimation Map Optimization

    New Image
    (640 x 480 at 30Hz)                 

Track on Current KF:
� estimate SE(3) transformation

Current KF

 Refine Current KF
� small-baseline stereo
� probabilistically
    merge into KF
� regularize depth map

Create New KF
� propagate depth map
    to new frame
� regularize depth map

Add KF to Map
� find closest keyframes 
� estimate Sim(3) edges

 

       (See Sec. 3.2, 3.5 and 3.6)                 (See Sec. 3.3)                     (See Sec. 3.4)

replace KF refine KF

yes no

tracking reference

add to map

Current Map
Take KF?

min
⇠2se(3)

P
p

����
r2
p

(p,⇠)

�2
r

p

(p,⇠)

����
�

min
⇠2sim(3)

P
p

����
r2
p

(p,⇠)

�2
r

p

(p,⇠)
+

r2
d

(p,⇠)

�2
r

d

(p,⇠)

����
�

Fig. 3: Overview over the complete LSD-SLAM algorithm.

In practice, the residuals are highly correlated, such that ⌃⇠ is only a lower
bound - yet it contains valuable information about the correlation between noise
on the di↵erent degrees of freedom. Note that we follow a left-multiplication
convention, equivalent results can be obtained using a right-multiplication con-
vention. However, the estimated covariance ⌃⇠ depends on the multiplication
order – when used in a pose graph optimization framework, this has to be
taken into account. The left-multiplication convention used here is consistent
with [23], while e.g. the default type-implementation in g2o [18] assumes right-
multiplication.

2.3 Propagation of Uncertainty

Propagation of uncertainty is a statistical tool to derive the uncertainty of the
output of a function f(X), caused by uncertainty on its input X. Assuming X
to be Gaussian distributed with covariance ⌃X, the covariance of f(X) can be
approximated (using the Jacobian J

f

of f) by

⌃
f

⇡ J
f

⌃XJT

f

. (11)

3 Large-Scale Direct Monocular SLAM

We start by giving an overview of the complete algorithm in Sec. 3.1, and briefly
introduce the representation for the global map in Sec. 3.2. The three main com-
ponents of the algorithm are then described in Sec. 3.3 (tracking of new frames),
Sec. 3.4 (depth map estimation), Sec. 3.5 (keyframe-to-keyframe tracking) and
finally Sec. 3.6 (map optimization).

3.1 The Complete Method

The algorithm consists of three major components: tracking, depth map es-
timation and map optimization as visualized in Fig. 3:

J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular slam. In European Conference on Computer Vision, pages 
834–849. Springer, 2014.



LSD SLAM

• Depth map can instead be represented as a Gaussian distribution.   

• Much more efficient than DTAM’s volumetric approach.  
• Engel et al. also used a similar (but more efficient) geometric 

prior to DTAM. 

J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular slam. In European Conference on Computer Vision, pages 
834–849. Springer, 2014.
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Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

¾ When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty 

¾ One way to avoid this consists of skipping frames until the average uncertainty of 
the 3D points decreases below a certain threshold. The selected frames are 
called keyframes 

¾ Rule of the thumb: add a keyframe when  

. . .  

average-depth 
keyframe distance > threshold (~10-20 %) 

Reminder: Keyframe Selection

• Rule of thumb: add a keyframe when, 

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

¾ When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty 

¾ One way to avoid this consists of skipping frames until the average uncertainty of 
the 3D points decreases below a certain threshold. The selected frames are 
called keyframes 

¾ Rule of the thumb: add a keyframe when  

. . .  

average-depth 
keyframe distance > threshold (~10-20 %) 

Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



Depths across Keyframes

First camera:

Second camera:

Substituting:

• Depth from keyframe 1 can be propagated to keyframe 2. 



LSD SLAM - Details

• To boot-strap LSD slam it is sufficient to initialize a random 
depth map with large variance.  

• Given sufficient translation camera motion in the first 
seconds of operation the algorithm “locks” to a good 
configuration. 

• Map is continuously optimized in the background using pose 
graph optimization. 

J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular slam. In European Conference on Computer Vision, pages 
834–849. Springer, 2014.
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graph optimization. 
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Pose Graph Optimization

• Similar to BA, but does not optimize over 3D points.  
• Employs knowledge that transformations can be computed 

between non-adjacent frames.  ¾ So far we assumed that the transformations are between consecutive frames 
 
 
 
 
 
 

¾ Transformations can be computed also between non-adjacent frames 𝑇𝑖𝑗 (e.g., when 
features from previous keyframes are still observed). They can be used as additional 
constraints to improve cameras poses by minimizing the following: 
 
 
 

¾ For efficiency, only the last 𝑚 keyframes are used 
¾ Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, 

efficient open-source tools: g2o, GTSAM, Google Ceres 
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Taken from D. Scaramuzza “Tutorial on Visual Odometry”. 



LSD SLAM - Details

• Source code to LSD SLAM can be found at,  

  https://github.com/tum-vision/lsd_slam 

• ROS is only used for input and output, facilitating easy 
portability to other platforms.

J. Engel, T. Schops, and D. Cremers. LSD-SLAM: Large-scale direct monocular slam. In European Conference on Computer Vision, pages 
834–849. Springer, 2014.

https://github.com/tum-vision/lsd_slam


Today

• Direct vs. Feature based methods  

• Dense SLAM  

• Semi-Dense SLAM 

• Photometric Bundle Adjustment



Drawbacks to Geometric Prior
• Geometric prior used in DTAM and LSD slam can have unwanted 

effects when solving BA problem. 

pose (diag) pose-geo geo (diag) geo (off-diag)

Figure 2. Sparse vs. dense Hessian structure. Left: Hes-
sian structure of sparse bundle adjustment: since the geometry-
geometry block is diagonal, it can be solved efficiently using the
Schur complement. Right: A geometry prior adds (partially un-
structured) geometry-geometry correlations – the resulting system
is hence not only much larger, but also becomes much harder to
solve. For simplicity, we do not show the global camera intrinsic
parameters.

mization methods for the dense geometry part, such as a
primal-dual formulation [22, 17, 18].

In addition, the expressive complexity of today’s priors
is limited: While they make the 3D reconstruction denser,
locally more accurate and more visually appealing, we
found that priors can introduce a bias, and thereby reduce
rather than increase long-term, large-scale accuracy. Note
that in time this may well change with the introduction of
more realistic, unbiased priors learnt from real-world data.

1.2. Contribution and Outline
In this paper we propose a sparse and direct approach to

monocular visual odometry. To our knowledge, it is the only
fully direct method that jointly optimizes the full likelihood
for all involved model parameters, including camera poses,
camera intrinsics, and geometry parameters (inverse depth
values). This is in contrast to hybrid approaches such as
SVO [8], which revert to an indirect formulation for joint
model optimization.

Optimization is performed in a sliding window, where
old camera poses as well as points that leave the field of
view of the camera are marginalized, in a manner inspired
by [14]. In contrast to existing approaches, our method fur-
ther takes full advantage of photometric camera calibration,
including lens attenuation, gamma correction, and known
exposure times. This integrated photometric calibration fur-
ther increases accuracy and robustness.

Our CPU-based implementation runs in real time on
a laptop computer. We show in extensive evaluations
on three different datasets comprising several hours of
video that it outperforms other state-of-the-art approaches
(direct and indirect), both in terms of robustness and
accuracy. With reduced settings (less points & active

keyframes), it even runs at 5⇥ real-time speed while
still outperforming state-of-the-art indirect methods.
On high, non-real-time settings in turn (more points &
active keyframes), it creates semi-dense models similar
in density to those of LSD-SLAM, but much more accurate.

The paper is organized as follows: The proposed di-
rect, sparse model as well as the windowed optimization
method are described in Section 2. Specifically, this com-
prises the geometric and photometric camera calibration in
Section 2.1, the model formulation in Section 2.2, and the
windowed optimization in Section 2.3. Section 3 describes
the front-end: the part of the algorithm that performs data-
selection and provides sufficiently accurate initializations
for the highly non-convex optimization back-end. We pro-
vide a thorough experimental comparison to other methods
in Section 4.1. We also evaluate the effect of important pa-
rameters and new concepts like the use of photometric cali-
bration in Section 4.2. In Section 4.3, we analyse the effect
of added photometric and geometric noise to the data. Fi-
nally, we provide a summary in Section 5.

2. Direct Sparse Model
Our direct sparse odometry is based on continuous opti-

mization of the photometric error over a window of recent
frames, taking into account a photometrically calibrated
model for image formation. In contrast to existing direct
methods, we jointly optimize for all involved parameters
(camera intrinsics, camera extrinsics, and inverse depth val-
ues), effectively performing the photometric equivalent of
windowed sparse bundle adjustment. We keep the geome-
try representation employed by other direct approaches, i.e.,
3D points are represented as inverse depth in a reference
frame (and thus have 1 degree of freedom).

Notation. Throughout the paper, bold lower-case letters
(x) represent vectors and bold upper-case letters (H) rep-
resent matrices. Scalars will be represented by light lower-
case letters (t), functions (including images) by light upper-
case letters (I). Camera poses are represented as transfor-
mation matrices Ti 2 SE(3), transforming a point from
the world frame into the camera frame. Linearized pose-
increments will be expressed as Lie-algebra elements xi 2
se(3), which – with a slight abuse of notation – we directly
write as vectors xi 2 R6. We further define the commonly
used operator � : se(3) ⇥ SE(3) ! SE(3) using a left-
multiplicative formulation, i.e.,

xi �Ti := e

c
xi ·Ti. (1)

2.1. Calibration
The direct approach comprehensively models the image

formation process. In addition to a geometric camera model

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. arXiv preprint arXiv:1607.02565, 2016. 



Drawbacks to Geometric Prior

• While geometric prior makes 3D reconstruction denser, locally more 
accurate and visual appealing.  

• Has additional drawbacks as it can introduce bias and thereby 
reduce long-term, large-scale accuracy. 

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. arXiv preprint arXiv:1607.02565, 2016. 



Semi-Dense SLAM

• Recently, the community has been exploring the idea of semi-dense 
direct SLAM.  

• In this new approach ALL parameters are solved simultaneously 
within a photometric bundle adjustment framework.  

• Can naturally sample all parts of image that contain image gradient 
information. 

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. arXiv preprint arXiv:1607.02565, 2016. 
H. Alismail, B. Browning and S. Lucey “Photometric Bundle Adjustment for Vision-based SLAM”, ACCV 2016.
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Photometric Bundle Adjustment

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. arXiv preprint arXiv:1607.02565, 2016. 
H. Alismail, B. Browning and S. Lucey “Photometric Bundle Adjustment for Vision-based SLAM”, ACCV 2016.



Photometric Bundle Adjustment

F - frames

FX

r=1

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. arXiv preprint arXiv:1607.02565, 2016. 
H. Alismail, B. Browning and S. Lucey “Photometric Bundle Adjustment for Vision-based SLAM”, ACCV 2016.
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Reminder: SLAM = BA

• One can view the problem of SfM - Bundle Adjustment as 
doing inference on a Markov Random Field (MRF). 

• Problem - becomes exponentially harder as times goes on.  

H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual SLAM: Why filter?” Image and Vision 
Computing, vol. 30, no. 2, pp. 65–77, 2012.  
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Markov random field shown in Fig. 1(a). The variables of interest are
Ti, each a vector of parameters representing a historic position of the
camera, and xj, each a vector of parameters representing the position
of a feature, assumed to be static. These are linked by image feature
measurements zij – the observation of feature xj from pose Ti – repre-
sented by edges in the graph. In real-time SLAM, this network will
continuously grow as new pose and measurement variables are
added at every time step, and new feature variables will be added
whenever new parts of a scene are explored for the first time.

Although various parametric and non-parametric inference tech-
niques have been applied to SFM and SLAM problems (such as parti-
cle filters [47,16]), the most generally successful methods in both
filtering and optimisation have assumed Gaussian distributions for
measurements and ultimately state-space estimation; equivalently
we could say that they are least-squares methods which minimises
in the reprojection error. BA in SFM, or the extended Kalman filter
(EKF) and variants in SLAM all manipulate the same types of matrices
representing Gaussian means and covariances. The clear reason is the
special status of the Gaussian as the central distribution of probability
theory whichmakes it the most efficient way to represent uncertainty
in a wide range of practical inference. We therefore restrict our anal-
ysis to this domain.

A direct application of optimal BA to sequential SLAMwould involve
finding the full maximum likelihood solution to the graph in Fig. 1(a)
from scratch as it grew at every new time-step. The computational
cost would clearly get larger at every frame, and quickly out of hand.
In inference suitable for real-time implementation, we therefore face
two key possibilities in order to avoid computational explosion.

In the filtering approach illustrated in Fig. 1(b), all poses other than
the current one are marginalised out after every frame. Features,
which may be measured again in the future, are retained. The result
is a graph that stays relatively compact; it will not grow arbitrarily
with time, and will not grow at all during repeated movement in a re-
stricted area, adding persistent feature variables only when new areas
are explored. The downside is that the graph quickly becomes fully
inter-connected, since every elimination of a past pose variable
causes fill-in with new links between every pair of feature variables
to which it was joined. Joint potentials over all of these mutually-
interconnected variables must therefore be stored and updated. The
computational cost of propagating joint distributions scales poorly
with the number of variables involved, and this is the main drawback
of filtering: in SLAM, the number of features in the map will be se-
verely limited. The standard algorithm for filtering using Gaussian
probability distributions is the EKF, where the dense inter-
connections between features are manifest in a single joint density
over features stored by a mean vector and large covariance matrix.

The other option is to retain BA's optimisation approach, solving the
graph from scratch time after time as it grows, but to sparsify it by re-
moving all but a small subset of past poses. In some applications it is
sensible for the retained poses to be in a slidingwindow of themost re-
cent camera positions, but more generally they are a set of intelligently
or heuristically chosen keyframes (see Fig. 1(c)). The other poses, and all
the measurements connected to them, are not marginalised out as in
the filter, but simply discarded — they do not contribute to estimates.

Compared to filtering, this approach will produce a graph that has
more elements (since many past poses are retained), but importantly
for inference the lack of marginalisation means that it will remain
sparsely inter-connected. The result is that graph optimisation remains
relatively efficient, even if the number of features in the graph andmea-
sured from the keyframes is very high. The ability to incorporate more
featuremeasurements counters the information lost from the discarded
frames. Note that BA-type optimisation methods are usually referred to
as smoothing in the robotics community [13].

So the key question is whether it makes sense to summarise the
information gained from historic poses and measurements by joint
probability distributions in state space and propagate these through
time (filtering), or to discard some of those measurements in such a
way that repeated optimisation from scratch becomes feasible (key-
frame BA), and propagating a probability distribution through time
is unnecessary. Comparisons of filtering and BA have been presented
in the past, but mainly focused on loop closures [12]. In particular, the
fact that the EKF led to inconsistencies due to linearisation issues has
been studied well in the past [24]. These results led to a series of sub-
mapping techniques [7,17,43] which are motivated not only by the
inconsistencies in filters once uncertainty is large but also by the
fact that a filter's cost increases, typical quadratically, with the map
size. Similarly, several techniques were introduced to reduce the
computational complexity of real-time BA using segment-wise opti-
misation [31], feature marginalisation followed by pose-graph opti-
misation [29,49], incremental smoothing [26] or relative/topological
representations [46]. Thus, it is possible to achieve linear or even
constant-time complexity for large scale visual SLAM. However, it
remained unclear whether filtering or BA should be used for the
building block of SLAM: very local motion estimates.

In our conference paper which the current article extends [48], we
compared filtering versus BA for monocular SLAM in terms of accura-
cy and computational cost. The analysis was performed using covari-
ance back-propagation starting from the ground truth solution and
assuming the best for filtering — that the accuracy of BA and filtering
is identical. The main result was: Increasing the number of observa-
tions N increases the accuracy, while increasing the number of inter-
mediate keyframes M only has a minor effect. Considering the cost of
BA (linear in N) to the cost of filtering (cubic in N), it becomes clear
that BA is the more efficient technique — especially if high accuracy
is required. In this work, we affirm this result while generalising our
previous work along several dimensions: First, we implement and an-
alyse the full SLAM pipeline including monocular bootstrapping, fea-
ture initialisation, and motion-only estimation. In particular, we
implement a state of the art filter and analyse its accuracy compared
to BA. Second, we extend our analysis to stereo SLAM. Third, andmost
important, we lift the assumption that all points are visible in all
frames and investigate a more realistic scenario where there is only
a partial scene overlap.

3. Defining an experimental setup

Hence, there are two main classes of real-time visual SLAM sys-
tems capable of consistent local mapping. The first class is based on
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Fig. 1. (a) SLAM/SFM as Markov random field without representing the measurements explicitly. (b) and (c) visualise how inference progressed in a filter and with keyframe-based
optimisation.
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Reminder: Keyframe

• A better strategy is to employ keyframe BA.  
• Made popular by Klein & Murray’s - Parallel Tracking and 

Mapping (PTAM) algorithm.
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camera, and xj, each a vector of parameters representing the position
of a feature, assumed to be static. These are linked by image feature
measurements zij – the observation of feature xj from pose Ti – repre-
sented by edges in the graph. In real-time SLAM, this network will
continuously grow as new pose and measurement variables are
added at every time step, and new feature variables will be added
whenever new parts of a scene are explored for the first time.

Although various parametric and non-parametric inference tech-
niques have been applied to SFM and SLAM problems (such as parti-
cle filters [47,16]), the most generally successful methods in both
filtering and optimisation have assumed Gaussian distributions for
measurements and ultimately state-space estimation; equivalently
we could say that they are least-squares methods which minimises
in the reprojection error. BA in SFM, or the extended Kalman filter
(EKF) and variants in SLAM all manipulate the same types of matrices
representing Gaussian means and covariances. The clear reason is the
special status of the Gaussian as the central distribution of probability
theory whichmakes it the most efficient way to represent uncertainty
in a wide range of practical inference. We therefore restrict our anal-
ysis to this domain.

A direct application of optimal BA to sequential SLAMwould involve
finding the full maximum likelihood solution to the graph in Fig. 1(a)
from scratch as it grew at every new time-step. The computational
cost would clearly get larger at every frame, and quickly out of hand.
In inference suitable for real-time implementation, we therefore face
two key possibilities in order to avoid computational explosion.

In the filtering approach illustrated in Fig. 1(b), all poses other than
the current one are marginalised out after every frame. Features,
which may be measured again in the future, are retained. The result
is a graph that stays relatively compact; it will not grow arbitrarily
with time, and will not grow at all during repeated movement in a re-
stricted area, adding persistent feature variables only when new areas
are explored. The downside is that the graph quickly becomes fully
inter-connected, since every elimination of a past pose variable
causes fill-in with new links between every pair of feature variables
to which it was joined. Joint potentials over all of these mutually-
interconnected variables must therefore be stored and updated. The
computational cost of propagating joint distributions scales poorly
with the number of variables involved, and this is the main drawback
of filtering: in SLAM, the number of features in the map will be se-
verely limited. The standard algorithm for filtering using Gaussian
probability distributions is the EKF, where the dense inter-
connections between features are manifest in a single joint density
over features stored by a mean vector and large covariance matrix.

The other option is to retain BA's optimisation approach, solving the
graph from scratch time after time as it grows, but to sparsify it by re-
moving all but a small subset of past poses. In some applications it is
sensible for the retained poses to be in a slidingwindow of themost re-
cent camera positions, but more generally they are a set of intelligently
or heuristically chosen keyframes (see Fig. 1(c)). The other poses, and all
the measurements connected to them, are not marginalised out as in
the filter, but simply discarded — they do not contribute to estimates.

Compared to filtering, this approach will produce a graph that has
more elements (since many past poses are retained), but importantly
for inference the lack of marginalisation means that it will remain
sparsely inter-connected. The result is that graph optimisation remains
relatively efficient, even if the number of features in the graph andmea-
sured from the keyframes is very high. The ability to incorporate more
featuremeasurements counters the information lost from the discarded
frames. Note that BA-type optimisation methods are usually referred to
as smoothing in the robotics community [13].

So the key question is whether it makes sense to summarise the
information gained from historic poses and measurements by joint
probability distributions in state space and propagate these through
time (filtering), or to discard some of those measurements in such a
way that repeated optimisation from scratch becomes feasible (key-
frame BA), and propagating a probability distribution through time
is unnecessary. Comparisons of filtering and BA have been presented
in the past, but mainly focused on loop closures [12]. In particular, the
fact that the EKF led to inconsistencies due to linearisation issues has
been studied well in the past [24]. These results led to a series of sub-
mapping techniques [7,17,43] which are motivated not only by the
inconsistencies in filters once uncertainty is large but also by the
fact that a filter's cost increases, typical quadratically, with the map
size. Similarly, several techniques were introduced to reduce the
computational complexity of real-time BA using segment-wise opti-
misation [31], feature marginalisation followed by pose-graph opti-
misation [29,49], incremental smoothing [26] or relative/topological
representations [46]. Thus, it is possible to achieve linear or even
constant-time complexity for large scale visual SLAM. However, it
remained unclear whether filtering or BA should be used for the
building block of SLAM: very local motion estimates.

In our conference paper which the current article extends [48], we
compared filtering versus BA for monocular SLAM in terms of accura-
cy and computational cost. The analysis was performed using covari-
ance back-propagation starting from the ground truth solution and
assuming the best for filtering — that the accuracy of BA and filtering
is identical. The main result was: Increasing the number of observa-
tions N increases the accuracy, while increasing the number of inter-
mediate keyframes M only has a minor effect. Considering the cost of
BA (linear in N) to the cost of filtering (cubic in N), it becomes clear
that BA is the more efficient technique — especially if high accuracy
is required. In this work, we affirm this result while generalising our
previous work along several dimensions: First, we implement and an-
alyse the full SLAM pipeline including monocular bootstrapping, fea-
ture initialisation, and motion-only estimation. In particular, we
implement a state of the art filter and analyse its accuracy compared
to BA. Second, we extend our analysis to stereo SLAM. Third, andmost
important, we lift the assumption that all points are visible in all
frames and investigate a more realistic scenario where there is only
a partial scene overlap.

3. Defining an experimental setup

Hence, there are two main classes of real-time visual SLAM sys-
tems capable of consistent local mapping. The first class is based on
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optimisation.
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Figure 11. Results on TUM-monoVO dataset. Accumulated ro-
tational drift er and scale drift es after a large loop, as well as
the alignment error as defined in [7]. Since es is a multiplicative
factor, we aggregate e0s = max(es, e

�1
s ). The solid line corre-

sponds to sequentialized, non-real-time execution, the dashed line
to hard enforced real-time processing. For DSO, we also show
results obtained at low parameter settings, running at 5 times real-
time speed.

tion of the loop-closure metric from the TUM-monoVO
dataset, we disable explicit loop-closure detection and re-
localization for ORB-SLAM. Note that everything else (in-
cluding local and global BA) remains unchanged, still al-
lowing ORB-SLAM to detect incremental loop-closures
that can be found via the co-visibility representation alone.
All parameters are set to the same value across all sequences
and datasets. The only exception is the ICL-NUIM dataset:
For this dataset we set gth = 3 for DSO, and lower the FAST
threshold for ORB-SLAM to 2, which we found to give best
results.

4.1. Quantitative Comparison

Figure 10 shows the absolute trajectory RMSE eate on the
EuRoC MAV dataset and the ICL-NUIM dataset for both
methods (if an algorithm gets lost within a sequence, we set
eate = 1). Figure 11 shows the alignment error ealign, as
well as the rotation-drift er and scale-drift es for the TUM-
monoVO dataset.

In addition to the non-real-time evaluation (bold lines),
we evaluate both algorithms in a hard-enforced real-time
setting on an Intel i7-4910MQ CPU (dashed lines). The
direct, sparse approach clearly outperforms ORB-SLAM
in accuracy and robustness both on the TUM-monoVO
dataset, as well as the synthetic ICL NUIM dataset. On
the EuRoC MAV dataset, ORB-SLAM achieves a better ac-
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Figure 12. Full evaluation result. All error values for the EuRoC
MAV dataset (left) and the ICL NUIM dataset (right): Each square
corresponds to the (color-coded) absolute trajectory error eate over
the full sequence. We run each of the 11 + 8 sequences (horizontal
axis) forwards (“Fwd”) and backwards (“Bwd”), 10 times each
(vertical axis); for the EuRoC MAV dataset we further use the left
and the right image stream. Figure 10 shows these error values
aggregated as cumulative error plot (bold, continuous lines).
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Figure 13. Full evaluation result. All error values for the TUM-
monoVO dataset: Each square corresponds to the (color-coded)
alignment error ealign, as defined in [7]. We run each of the
50 sequences (horizontal axis) forwards (“Fwd”) and backwards
(“Bwd”), 10 times each (vertical axis). Figure 11 shows all these
error values aggregated as cumulative error plot (bold, continuous
lines).

curacy (but lower robustness): This is due to two major
reasons: (1) there is no photometric calibration available,
and (2) the sequences contain many small loops or segments
where the quadrocopter “back-tracks” the way it came, al-
lowing ORB-SLAM’s local mapping component to implic-
itly close many small and some large loops, whereas our

J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry. arXiv preprint arXiv:1607.02565, 2016. 

All error values for the TUM- monoVO dataset. 
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