Accessing the GPU &
the GPUImage Library

Instructor - Simon Lucey

16-623 - Advanced Computer Vision Apps

Carnegie Mellon

¥ THE ROBOTICS INSTITUTE

Today

* Motivation

- GPU

* OpenGL
 GPUImage Library

Algorithm

Software

Architecture

SOC Hardware

lgorithm

Software

rchitecture

C Hardware

This CVPR2015 naner is the Onen Access version. nrovided bv the Comnuter Vision Foundati

Correlation Filters with Limited Boundaries

Hamed Kiani Galoogahi Terence Sim Simon Lucey
Istituto Italiano di Tecnologia National University of Singapore Carnegie Mellon University
Genova, Italy Singapore Pittsburgh, USA
hamed.kiani@iit.it tsim@comp.nus.edu.sg slucey@cs.cmu.edu

Abstract

Correlation filters take advantage of specific proper-
ties in the Fourier domain allowing them to be estimated
efficiently: O(NDlogD) in the frequency domain, ver-
sus O(D® + ND?) spatially where D is signal length,
and N is the number of signals. Recent extensions to cor-
relation filters, such as MOSSE, have reignited interest of
their use in the vision community due to their robustness
and attractive computational properties. In this paper we
demonstrate, however, that this computational efficiency

main, (ii) dramatically reduces boundary effects, and (iii)
is able to implicitly exploit all possible patches densely ex-
tracted from training examples during learning process. Im-
pressive object tracking and detection results are presented
in terms of both accuracy and computational efficiency.

1. Introduction

Correlation between two signals is a standard approach
to feature detection/matching. Correlation touches nearly
every facet of computer vision from pattern detection to ob-
ject tracking. Correlation is rarely performed naively in the
spatial domain. Instead, the fast Fourier transform (FFT)
affords the efficient application of correlating a desired tem-
plate/filter with a signal.

Correlation filters, developed initially in the seminal
work of Hester and Casasent [15], are a method for learning
a template/filter in the frequency domain that rose to some
prominence in the 80s and 90s. Although many variants
have been proposed [15, 18, 20, 19], the approach’s central
tenet is to learn a filter, that when correlated with a set of
training signals, gives a desired response, e.g. Figure 1 (b).
Like correlation, one of the central advantages of the ap-

Fim the example
the image from which the peak cOfrela®®I output should occur.
(b) The desired output response, based on (a), of the correlation
filter when applied to the entire image. (c) A subset of patch ex-
amples used in a canonical correlation filter where green denotes
a non-zero correlation output, and red denotes a zero correlation
output in direct accordance with (b). (d) A subset of patch ex-
amples used in our proposed correlation filter. Note that our pro-
posed approach uses all possible patches stemming from different
parts of the image, whereas the canonical correlation filter simply
employs circular shifted versions of the same single patch. The
central dilemma in this paper is how to perform (d) efficiently in
the Fourier domain. The two last patches of (d) show that %
patches near the image border are affected by circular shift in our
method which can be greatly diminished by choosing D << T,
where D and T indicate the length of the vectorized face patch in
(a) and the whole image in (a), respectively.

proach is that it attempts to learn the filter in the frequency
domain due to the efficiency of correlation in that domain.
Interest in correlation filters has been reignited in the vi-
sion world through the recent work of Bolme et al. [5] on
Minimum Output Sum of Squared Error (MOSSE) correla-
tion filters for object detection and tracking. Bolme et al.’s
work was able to circumvent some of the classical problems

4630

Algorithm | ‘4.;

5. Now apply some OpenCV operations
::Mat gray; cv::cvtColor(cvImage, gray,

CV_RGBA2GRAY); // Convert to grayscale

: :GaussianBlur(gray, gray, cv::Size(5,5), 1.2, 1.2); //
Apply Gaussian blur

: :Mat edges; cv::Canny(gray, edges, @, 50); // Estimate
edge map using Canny edge detector

[] 8 x [[[T& 4-way

SIMD (Single Instruction, Multiple Data)

Architecture

SOC Hardware

mobile chip

Bus
16-32 bits| System RAM
L L 4-64 MB
1 2 50-15- MHz
h h
DSP, o e 8-16
ISP etc 32 MB - 2GB

SOC Hardware

Reminder:Alternatives to OpenCV

FastCV Computer Vision SDK
A product of Qualcomm Technologies, Inc.

(https://developer.qualcomm.com/software/fastcv-sdk)

OpenVX.

KHRCONOS

(https://www.khronos.org/openvx/)

(@ Accelerated CV

(http://opencv.org/itseez-announces-release-of-accelerated-cv-library.html)

A
LT

l + GPUlmage
hitps://github.com/Bradl arson/GPUImaage

https://developer.qualcomm.com/software/fastcv-sdk
https://www.khronos.org/openvx/
http://opencv.org/itseez-announces-release-of-accelerated-cv-library.html
https://github.com/BradLarson/GPUImage

Today

* Motivation

- GPU

* OpenGL
 GPUImage Library

JU*

faster GPU

iPhone 3G

GFX Bench - Manhattan 3.0

ARM processor - FHD (1920x1080) devices 2015/05/24 [link)

Project Tango m

Apple iPhone 6 1793
| | |

NVIDIA Shield 1675
| | |

Apple iPad Air 2 1671
Apple iPhone 5S | | | 1665
Sony Experia Z3 1621
Opus E350 1548
ZTE Grand S Pro 1373
Google Nexus 9 1351
ZTE NX510J 1337
HTC One M9 1259

LG G Flex 2 1232

| Frames

(Taken from YouTube Tango Talk 2015)

OpenCL versus CUDA

* Open Computing Language (OpenCL)
* OpenCL is the currently the dominant open general-

purpose GPU computing language, and is an open
standard.

* OpenCL is actively supported on Intel, AMD, Nvidia and
ARM platforms.

* OpenCL is based on the C99 language.

« Compute Unified Device Architecture (CUDA)

* Dominant proprietary (NVIDIA) framework.

» Designed to work with well known languages such as C, C++ and
Fortran.

* OpenCV 3.0 now has support for both.
* Neither are supported in iIOS, so we cannot use them (.

13

Today

* Motivation

- GPU

* OpenGL
 GPUImage Library

What is OpenGL?

* OpenGL is a graphics API
» Portable software library (platform-independent)
 Layer between programmer and graphics hardware
» Uniform instruction set (hides different capabillities)

* OpenGL can fit in many places
» Between application and graphics system
» Between higher level AP| and graphics system

* Why do we need OpenGL or an API?

Encapsulates many basic functions of 2D/3D graphics
Think of it as high-level language (C++) for graphics
History: Introduced SGl in 92, maintained by Khronos
* Precursor for DirectX, WebGL, Java3D etc.

* OpenGL is platform independent.

15

OpenGL

Since 2003, can write vertex/pixel shaders.

Fixed function pipeline special type of shader.

Like writing C programs.

Performance >> CPU (even used for non-graphics).

Operate in parallel on all vertices or fragments.

penGL.

16

OpenGL ES

» ES stands for Embedded Systems (ES).

» Subset of OpenGL API
* Libraries GLUT and GLU not available.

* Designed for embedded systems like smart devices.

* Released in 2003, also maintained by Khronos.

ES.

17

The “World” is Triangular!!!

18

The “World” is Triangular!!!

4%
-~
A

)

>
»
\

DAy

AN

19

Taken from:

50 60
70

4
» vertex shader
v
(]
o o
o
o o
o
v
triangle assembly

2]

v
rasterizahion

€

< » frogment shader

€

v
testing ons blending

framebuffer

OpenGL Pipeline

Vertex array: location of vertex in 3D
space.

Vertex Shader: at a minimum
calculates the projected position of the
vertex in screen space.

Triangle Assembly: connects the
projected vertices.

Rasterization: breaks the remaining
visible parts into pixel-sized fragments.

Fragment Shader: texture mapping
and lighting.

Testing & Blending: discards
fragments from objects that are behind
the ones already drawn.

Framebuffers: final destination for the
rendering job.

20

http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html#ql1-pipeline

http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html#gl1-pipeline

Programmable Shaders

* A Shader is a user-defined program designed to run on

some stage of a graphics processor.

* |ts purpose is to execute one of the programmable stages of the
rendering pipeline.

» Since shaders are programmable, they are increasingly been used for
non-graphics applications - such as computer vision operations.

* Running custom filters on the GPU using OpenGL ES
requires a lot of code to set up and maintain (.

* Much of the code is boilerplate, however, it is extremely
cumbersome to build up a full application to test out ideas In

vision using OpenGL ES.

21

Why the GPU?

 Vertices, pixel fragments, and pixels are largely
independent.

* Most of these entities can therefore be processed in parallel.
* For example,

3 vertices of a triangle can be processed in parallel.
* two triangles can be rasterized in parallel, etc.

* The rise of GPUs over the last two decades has been
motivated by this inherent parallelism.

* More to read:- D. Blythe “Rise of the Graphics Processor”
Proceedings of the IEEE 2008.

22

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/blythe08_riseofgpu.pdf

Today

* Motivation

- GPU

* OpenGL
 GPUImage Library

GPUlmage Library

* BSD-licensed iOS library that lets
you apply GPU-accelerated filters
and other effects to images, live
camera video and movies.

Your App

» Allows you to write your own custom GPU Image

filters in OpenGL-ES.

» Released in 2012 and developed by Ofle"(flz'f\ i

glDrawElements

Brad Larson.
» GPUlmage for Android now also

exists. |
R .

http://www.sunsetlakesoftware.com/2012/02/12/introducing-gpuimage-framework
https://github.com/CyberAgent/android-gpuimage

GPUlmage

* GPUImage can do many things OpenCV can do, but much
faster through the GPU -
» Color conversions (grayscale, RGB2HSV, etc.)
* Image processing (image warping, cropping, blurring, edges, etc.)
 Blending (drawing lines, points, etc.)
* Visual effects (pixellate, sketch, etc.)
« Computer vision (interest point detectors, hough transform, etc.)

» Check out - https://github.com/BradLarson/GPUImage for a
full description of the capabilities.

26

https://github.com/BradLarson/GPUImage

GPUlmage - Example Filters

» GPUlmageShiTomasiCornerDetectionFilter: Runs the Shi-Tomasi feature detector. It behaves as described
above for the Harris detector.

o blurRadiusinPixels: The radius of the underlying Gaussian blur. The default is 2.0.

o sensitivity: An internal scaling factor applied to adjust the dynamic range of the cornerness maps generated
in the filter. The default is 1.5.

o threshold: The threshold at which a point is detected as a corner. This can vary significantly based on the
size, lighting conditions, and iOS device camera type, so it might take a little experimentation to get right for
your cases. Default is 0.2.

» GPUlmageCannyEdgeDetectionFilter: This uses the full Canny process to highlight one-pixel-wide edges

o texelWidth:

o texelHeight: These parameters affect the visibility of the detected edges

o blurRadiusinPixels: The underlying blur radius for the Gaussian blur. Default is 2.0.

o blurTexelSpacingMultiplier: The underlying blur texel spacing multiplier. Default is 1.0.

o upperThreshold: Any edge with a gradient magnitude above this threshold will pass and show up in the final
result. Default is 0.4.

o lowerThreshold: Any edge with a gradient magnitude below this threshold will fail and be removed from the
final result. Default is 0.1.

» GPUIlmageHoughTransformLineDetector: Detects lines in the image using a Hough transform into parallel
coordinate space. This approach is based entirely on the PC lines process developed by the Graph@FIT research
group at the Brno University of Technology and described in their publications: M. Dubska, J. Havel, and A.
Herout. Real-Time Detection of Lines using Parallel Coordinates and OpenGL. Proceedings of SCCG 2011,
Bratislava, SK, p. 7 (http://medusa.fit.vutbr.cz/public/data/papers/2011-SCCG-Dubska-Real-Time-Line-
Detection-Using-PC-and-OpenGL.pdf) and M. Dubska, J. Havel, and A. Herout. PClines — Line detection using

GPUlmage vs Corelmage

* There exists an internal framework in iIOS called Corelmage

that can do some of the things GPUImage can do.

 GPUImage is preferred in vision applications as,

* You can seamlessly integrate filters with CPU C++ code using
GPUImageRawData . (more on this in later lectures)

* All filters are written in OpenGL ES, so you can write custom filters if

necessary.

» Code is more portable (i.e. Android).

{

varying highp vec2 textureCoordinate;
uniform sampler2D inputImageTexture;

void main()

lowp vecd4 textureColor = texture2D(inputImageTexture, textureCoordinate);

lowp vecd4 outputColor;

outputColor.r = (textureColor.r % 0.393) + (textureColor.g * 0.769) + (textureColo
outputColor.g = (textureColor.r * ©.349) + (textureColor.g * 0.686) + (textureColo
outputColor.b = (textureColor.r x 0.272) + (textureColor.g x 0.534) + (textureColo
outputColor.a = 1.0;

gl_FragColor = outputColor;

28

GPUlmage

R

GPUImage in Xcode

- Int GPUIn
» =8 GPUImage.framework x ntro_ mage

» = QuartzCore.framework // Created by Simon Lucey on 9/23/15.
//

= ﬁ OpenGLES.framework
> ﬁ CoreVideo.framework gimpo =

» 53 CoreMedia.framework import <GPUImage/GPUImage.h>

v | | Intro_GPUImage @interface ViewController () {
h AppDelegate.h // Setup the view (this time using GPUIme

m AppDelegate.m }
h ViewController.h
@ ViewController.mm

Main.storyboard @implementation ViewController

@end

30

Playing with GPUImage

* We are now going to have a play with GPUImage.
* On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Intro GPUImage

* Or better yet, if you have git installed you can type from the
command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Intro GPUImage.git

https://github.com/slucey-cs-cmu-edu/Intro_GPUImage
https://github.com/slucey-cs-cmu-edu/Intro_GPUImage.git

Playing with GPUImage

#import "ViewController.h"
#import <GPUImage/GPUImage.h>

@interface ViewController () {
// Setup the view (this time using GPUImageView)
GPUImageView ximageView_;

@end

@implementation ViewController

- (void)viewDidLoad {
[super viewDidLoad];

// Do any additional setup after loading the view, typically from a nib.

// Setup GPUImageView (not we are not using UIImageView here)......ea.
imageView_ = [[GPUImageView alloc] initWithFrame:CGRectMake(0.0, 0.0, self

// Important: add as a subview
[self.view addSubview: imageView_];

Playing with GPUImage

// Read in the image (of the famous Lena)
UIImage xinputImage = [UIImage imageNamed:@'"lena.png"];

// Initialize filters
GPUImagePicture xstillImageSource = [[GPUImagePicture alloc] initWithImage:inputImage];
GPUImageSepiaFilter xstillImageFilter = [[GPUImageSepiaFilter alloc] init];

// Daisy chain the filters together (you can add as many filters as you like)
[stillImageSource addTarget:stillImageFilter];
[stillImageFilter addTarget:imageView_];

// Process the image
[stillImageSource processImage];

- (void)didReceiveMemoryWarning {
[super didReceiveMemoryWarning];
// Dispose of any resources that can be recreated.

@end

GPUlmage for Movies

05 s PUImag = — . , .
. % Movie_GPUImage 7 .
& 2 targots, 105 SOK 8.4 // ViewController.nm
/7 Movie GPUlmage
b i AVFoundation, framework // R.urvinsge
» 3 OpenGLES. framework // Created by Simon Lucey on 9/24/15.

bgOuwtzCoro.fmmrk // Copyright (¢) 2015 OMU_16432. ALl rights reserved.

» £ CoreVideo. framework

DQCONMMJQWR ginport “ViewController.h”
ginport <GPUlmage/GPUIm e

DQGPUlmage.hnmmrk mpor GPUImage/GPUImage

v Movie_GPUImage ginterface ViewController (){

AppDelogat // Setup the view (this time using GPUImageView)

h a.h J/ Setup the view 1s 1L using G g
~— GPUIrageView wvideoView_;

m AppDelegate.)
h ViewController.h @end
n ViewControlier,mm
_J @implementation ViewController

Main.storyboard
=9 |mm“JcM3 - (void)viewDidlLoad {
™ [super viewDidLoad);

LaunchScreen. xib // Do any additional setup after loading the view, typically froe a nib.

v Supponting Files

B videoView = [[GPUI: ‘ self.view.frame.size.width, self.view.frame.size.
In'OAD‘I5(height) l :
m main.m // Important: add as & subview
[self.view addSubview:videoView_);

v Movie_GPUImagoTosts

m Movie_GPUimageTests.m // Set the movie file to read
» | I Supporting Flles NSURL #sampleURL = [[NSBundle mainBundle) URLForResource:@"simon™ withExtension:@ mov™);

> Products GPUImageMovie smovieFile = [[GPUImageMovie alloc) initWithURL:saspleURL);
movieFile, runBenchmark = NO;
movieFile.playAtActualSpeed = YES;

J// Initialize fTilters

GPUImageSepiaFilter wscepiafFilter = [[GPUImageSepiaFilter alloc] init];

// Daisy chain the filters together (you can add as many filters as you like)
[movieFile addTarget:sepiaFilter);
[sepiaFilter addTarget:videoView);

// Rotates the video right so it displays properly
[sepiaFilter setInputRotation:kGPUImageRotateRight atIndex:®);

// Process the movie
[movieFile startProcessingl;

}

- (void)didReceiveMeroryWarning {
[super dicReceiveMemoryWarning);
// Dispose of any resources that can be recreated.,

Movies with GPUlmage

* On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Movie GPUImage

* Or better yet, if you have git installed you can type from the
command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Movie GPUImage

https://github.com/slucey-cs-cmu-edu/Movie_GPUImage
https://github.com/slucey-cs-cmu-edu/Movie_GPUImage

GPUlmage2

 GPUImage 2 was released in 2016...
» Second generation of GPUImage framework for SWIFT.

» Check out on https://github.com/BradLarson/GPUImage2

37

https://github.com/BradLarson/GPUImage2

K

Metal

What About?

For more information on MetalGL check out - https:/metalgl.com/

™

https://metalgl.com/

Supposedly 3x Faster!!

For more information on MetalGL check out - https:/metalgl.com/

https://metalgl.com/

Your App

OpenGL API

glTexImage2D()
glDrawElements

For more information on MetalGL check out - https:/metalgl.com/

Your App

OpenGL API

glTexImage2D ()
glDrawElements

MetalGL
Metal

https://metalgl.com/

More Examples to Play With...

* Download the complete GPUImage library from,

e https://github.com/BradlLarson/GPUImage

* In there you will find a fair amount of example code,
« SimpleVideoFileFilter
* FilterShowCase
* MultiViewFilterExample
* BenchmarkSuite
* RawDataTest

https://github.com/BradLarson/GPUImage

