
Accessing the GPU &
the GPUImage Library

Instructor - Simon Lucey

16-623 - Advanced Computer Vision Apps

Today

• Motivation

• GPU

• OpenGL

• GPUImage Library

Algorithm

Software

Architecture

SOC Hardware

Algorithm

Software

Architecture

SOC Hardware

Correlation Filters with Limited Boundaries

Hamed Kiani Galoogahi
Istituto Italiano di Tecnologia

Genova, Italy
hamed.kiani@iit.it

Terence Sim
National University of Singapore

Singapore
tsim@comp.nus.edu.sg

Simon Lucey
Carnegie Mellon University

Pittsburgh, USA
slucey@cs.cmu.edu

Abstract

Correlation filters take advantage of specific proper-

ties in the Fourier domain allowing them to be estimated

efficiently: O(ND logD) in the frequency domain, ver-

sus O(D3 + ND2) spatially where D is signal length,

and N is the number of signals. Recent extensions to cor-

relation filters, such as MOSSE, have reignited interest of

their use in the vision community due to their robustness

and attractive computational properties. In this paper we

demonstrate, however, that this computational efficiency

comes at a cost. Specifically, we demonstrate that only 1
D

proportion of shifted examples are unaffected by boundary

effects which has a dramatic effect on detection/tracking

performance. In this paper, we propose a novel approach

to correlation filter estimation that: (i) takes advantage of

inherent computational redundancies in the frequency do-

main, (ii) dramatically reduces boundary effects, and (iii)

is able to implicitly exploit all possible patches densely ex-

tracted from training examples during learning process. Im-

pressive object tracking and detection results are presented

in terms of both accuracy and computational efficiency.

1. Introduction

Correlation between two signals is a standard approach
to feature detection/matching. Correlation touches nearly
every facet of computer vision from pattern detection to ob-
ject tracking. Correlation is rarely performed naively in the
spatial domain. Instead, the fast Fourier transform (FFT)
affords the efficient application of correlating a desired tem-
plate/filter with a signal.

Correlation filters, developed initially in the seminal
work of Hester and Casasent [15], are a method for learning
a template/filter in the frequency domain that rose to some
prominence in the 80s and 90s. Although many variants
have been proposed [15, 18, 20, 19], the approach’s central
tenet is to learn a filter, that when correlated with a set of
training signals, gives a desired response, e.g. Figure 1 (b).
Like correlation, one of the central advantages of the ap-

(a) (b)

� �(c) (d)

Figure 1. (a) Defines the example of fixed spatial support within

the image from which the peak correlation output should occur.

(b) The desired output response, based on (a), of the correlation

filter when applied to the entire image. (c) A subset of patch ex-

amples used in a canonical correlation filter where green denotes

a non-zero correlation output, and red denotes a zero correlation

output in direct accordance with (b). (d) A subset of patch ex-

amples used in our proposed correlation filter. Note that our pro-

posed approach uses all possible patches stemming from different

parts of the image, whereas the canonical correlation filter simply

employs circular shifted versions of the same single patch. The

central dilemma in this paper is how to perform (d) efficiently in

the Fourier domain. The two last patches of (d) show that D−1

T

patches near the image border are affected by circular shift in our

method which can be greatly diminished by choosing D << T ,

where D and T indicate the length of the vectorized face patch in

(a) and the whole image in (a), respectively.

proach is that it attempts to learn the filter in the frequency
domain due to the efficiency of correlation in that domain.

Interest in correlation filters has been reignited in the vi-
sion world through the recent work of Bolme et al. [5] on
Minimum Output Sum of Squared Error (MOSSE) correla-
tion filters for object detection and tracking. Bolme et al.’s
work was able to circumvent some of the classical problems

Ax = b

Algorithm

Software

Architecture

Hardware

Algorithm

Software

Architecture

SOC Hardware

© Markus Püschel
Computer Science

How to write fast numerical code
Spring 2015

SIMD Vector Extensions

� What is it?
� Extension of the ISA
� Data types and instructions for the parallel computation on short

(length 2, 4, 8, …) vectors of integers or floats
� Names: MMX, SSE, SSE2, …

� Why do they exist?
� Useful: Many applications have the necessary fine-grain parallelism

Then: speedup by a factor close to vector length
� Doable: Relative easy to design; chip designers have enough transistors to

play with

+ x 4-way

5

© Markus Püschel
Computer Science

128 bit

256 bit

64 bit
(only int)

MMX:
Multimedia extension

SSE:
Streaming SIMD extension

AVX:
Advanced vector extensions

time

x86-64 / em64t

x86-32

x86-16

MMX

SSE

SSE2

SSE3

SSE4

8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Penryn
Core i7 (Nehalem)
Sandy Bridge
Haswell

Intel x86 Processors

AVX
AVX2

register
width

SIMD (Single Instruction, Multiple Data)

Algorithm

Software

Architecture

SOC Hardware

Figure 1. (a) A high-level block diagram of a mobile SoC system.
The GPU shares the system bus with the CPU and other computing
hardwares. (b) The processing flow and block diagram of an ultra-
low-power GeForce GPU in the Tegra SOC [3]. The inclusion of
caches and performing the depth culling before the pixel processing
help reduce the traffic to system memory and reduce the overall
power dissipation.

Programming API

OpenGL ES 2.0 [8] is the primary graphics programming
interface for handheld and embedded devices with a programmable
GPU: a programmable vertex shader and fragment shader for per
vertex position and per pixel calculation respectively. Other stages in
the rendering pipeline, such as rasterization and culling, remain as
fixed functions. OpenGL ES 2.0 is a subset of the widespread
adopted OpenGL standard used in desktop systems and game
consoles. This subset removes some redundancy from the OpenGL
API. For example, if multiple methods can perform the same
operation, the most useful method is adopted and other redundant
methods are removed. An example is that only vertex arrays are used
to specify geometry in OpenGL ES 2.0, whereas in OpenGL an
application can also use the immediate mode and the display lists in
addition to the vertex array to specify geometry. There are also new
features introduced to address specific constraints of handheld
devices. For example, to reduce the power consumption and increase
the performance of the shaders, precision qualifiers were introduced
to the shading language: lowp (10-bit fixed point format in the range
[-2,2), with a precision of 1/256), mediump (16-bit floating point
values in the range [-65520, 65520]), and highp (32-bit floating point
variables) [11].

To utilize a mobile GPU as a general-purpose accelerator,
programmers have to map the algorithms to the graphics operations,
and write the shader programs to configure the vertex and fragment
shaders. However, the graphics APIs expose little controllability to
the low-level hardware, and hence makes it less flexible to use the
GPU for general-purpose computing. For example, the graphics
APIs in the current versions of OpenGL ES do not have the “scatter”
operation (i.e. write to an arbitrary memory location), or thread-level
synchronization. The commonly used high-level APIs for a desktop
environment, such as CUDA [10] and OpenCL [9], are not supported
in the embedded platform yet.

MOBILE GP-GPU: CAPABILITY AND LIMITATIONS
We implemented Fast Fourier Transform (FFT), a kernel

computation of many image and signal processing algorithms, on a
mobile GPU with the intent of testing the applicability of utilizing
mobile GPU for higher level tasks. Its performance and power
consumption were then compared to a mobile CPU and a desktop
GPU. Our experiments were performed on an Nvidia Tegra SoC [3]
with the following specifications: a 1GHz dual-core ARM Cortex-
A9 CPU, 1GB of RAM, an Nvidia ultra-low-power GeForce GPU
running at 333MHz, and 512MB of Flash memory.

 FFT on GPU

A 1D FFT of sample N is defined as
 , where . In our study,
we examined an implementation of the Cooley-Tukey FFT
algorithm, based on the approach presented in [15], using OpenGL
ES 2.0 API and the shader language. The processing flow of the
Cooley-Tukey method is depicted in Figure 2. A total of
stages are required to complete the computation for N samples.
Samples in each stage form pairs between two groups, as shown in
the dotted box of Figure 2. The computation of this group is
expressed as: and . The coefficients
of each sample (i.e.) is pre-computed and stored as a texture
for the shader program to fetch. It should be noticed that the sign of
the coefficient is also included in the texture in order to avoid the
conditional computation (e.g. branches) within the shader program.

The transformation of a 2D image is done by applying 1D FFT to
rows and columns consecutively. For each stage, a quad is rendered
covering the entire 2D data array. Each stage requires a
texture of size to store the pre-computed coefficients. To
reduce the memory bandwidth between system memory and GPU
memory, the coefficients for the real part and the imaginary part are
stored in the two channels of the texture. Another texture storing the
fetch indices is required. Although it could be combined with
coefficient texture, such implementation is wasteful because indices
require a lower resolution texture than that required for coefficients.
Therefore, we allocate a texture with a lower resolution for fetch
indices to reduce the memory bandwidth. The iterative processing is
implemented by multiple rendering passes, with a floating point
framebuffer object (FBO) (Chapter 12 in [11]) to store the
intermediate rendering results.

Figure 2. Processing flow of a 8-sample 1D FFT

Comparison With Mobile CPU

The measured execution time and measured power consumption
of computing 2D complex FFT of various sizes on the Tegra CPU
and GPU are shown in the first and second rows respectively of
Table 1. The listed execution time is the average time of computing
FFT and IFFT 50 times. For FFT, the GPU is 3x faster
and consumes 8% more power than the CPU (1 second vs. 3.1
seconds, and 4.1 watts vs. 3.7 watts). The slightly higher power
when using GPU is because the CPU is not idle when the GPU is

(a)

(b)

Reminder:Alternatives to OpenCV

(https://developer.qualcomm.com/software/fastcv-sdk)

© Copyright Khronos Group 2016 - Page 3

Vision Pipeline Challenges and Opportunities

22

Sensor ProliferationGrowing Camera Diversity Diverse Vision Processors

Flexible sensor and camera
control to GENERATE

an image stream

Use efficient acceleration to
PROCESS

the image stream

Combine vision output
with other sensor data

on device

© Copyright Khronos Group 2016 - Page 1

OpenVX 1.1
May 2016

Neil Trevett | Khronos President
NVIDIA Vice President Developer Ecosystem

(https://www.khronos.org/openvx/)

(http://opencv.org/itseez-announces-release-of-accelerated-cv-library.html)

GPUImage
(https://github.com/BradLarson/GPUImage)

https://developer.qualcomm.com/software/fastcv-sdk
https://www.khronos.org/openvx/
http://opencv.org/itseez-announces-release-of-accelerated-cv-library.html
https://github.com/BradLarson/GPUImage

Today

• Motivation

• GPU

• OpenGL

• GPUImage Library

2010

2014

(Taken from YouTube Tango Talk 2015)

OpenCL versus CUDA

• Open Computing Language (OpenCL)
• OpenCL is the currently the dominant open general-

purpose GPU computing language, and is an open
standard.

• OpenCL is actively supported on Intel, AMD, Nvidia and
ARM platforms.

• OpenCL is based on the C99 language.
• Compute Unified Device Architecture (CUDA)

• Dominant proprietary (NVIDIA) framework.
• Designed to work with well known languages such as C, C++ and

Fortran.
• OpenCV 3.0 now has support for both.
• Neither are supported in iOS, so we cannot use them :(.

13

Today

• Motivation

• GPU

• OpenGL

• GPUImage Library

What is OpenGL?

• OpenGL is a graphics API
• Portable software library (platform-independent)
• Layer between programmer and graphics hardware
• Uniform instruction set (hides different capabilities)

• OpenGL can fit in many places
• Between application and graphics system
• Between higher level API and graphics system

• Why do we need OpenGL or an API?
• Encapsulates many basic functions of 2D/3D graphics
• Think of it as high-level language (C++) for graphics
• History: Introduced SGI in 92, maintained by Khronos
• Precursor for DirectX, WebGL, Java3D etc.

• OpenGL is platform independent.

15

OpenGL

• Since 2003, can write vertex/pixel shaders.

• Fixed function pipeline special type of shader.

• Like writing C programs.

• Performance >> CPU (even used for non-graphics).

• Operate in parallel on all vertices or fragments.

16

OpenGL ES

• ES stands for Embedded Systems (ES).
• Subset of OpenGL API

• Libraries GLUT and GLU not available.

• Designed for embedded systems like smart devices.
• Released in 2003, also maintained by Khronos.

17

The “World” is Triangular!!!

18

Kayvon Fatahalian CMU 15-869, Fall 2011

3D rendering

Image credit: Henrik Wann Jensen

Model of a scene:
3D surface geometry (e.g., triangle mesh)

surface materials
lights

camera

Image

How does each triangle contribute to each pixel in the image?

The “World” is Triangular!!!

19

OpenGL Pipeline
• Vertex array: location of vertex in 3D

space.
• Vertex Shader: at a minimum

calculates the projected position of the
vertex in screen space.

• Triangle Assembly: connects the
projected vertices.

• Rasterization: breaks the remaining
visible parts into pixel-sized fragments.

• Fragment Shader: texture mapping
and lighting.

• Test ing & Blending: d iscards
fragments from objects that are behind
the ones already drawn.

• Framebuffers: final destination for the
rendering job.

20Taken from: http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html#gl1-pipeline

http://duriansoftware.com/joe/An-intro-to-modern-OpenGL.-Chapter-1:-The-Graphics-Pipeline.html#gl1-pipeline

Programmable Shaders

• A Shader is a user-defined program designed to run on
some stage of a graphics processor.
• Its purpose is to execute one of the programmable stages of the

rendering pipeline.
• Since shaders are programmable, they are increasingly been used for

non-graphics applications - such as computer vision operations.

• Running custom filters on the GPU using OpenGL ES
requires a lot of code to set up and maintain :(.

• Much of the code is boilerplate, however, it is extremely
cumbersome to build up a full application to test out ideas in
vision using OpenGL ES.

21

Why the GPU?

• Vertices, pixel fragments, and pixels are largely
independent.

• Most of these entities can therefore be processed in parallel.
• For example,

• 3 vertices of a triangle can be processed in parallel.
• two triangles can be rasterized in parallel, etc.

• The rise of GPUs over the last two decades has been
motivated by this inherent parallelism.

• More to read:- D. Blythe “Rise of the Graphics Processor”
Proceedings of the IEEE 2008.

22

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/blythe08_riseofgpu.pdf

Today

• Motivation

• GPU

• OpenGL

• GPUImage Library

GPUImage +

GPUImage Library

• BSD-licensed iOS library that lets
you apply GPU-accelerated filters
and other effects to images, live
camera video and movies.

• Allows you to write your own custom
filters in OpenGL-ES.

• Released in 2012 and developed by
Brad Larson.

• GPUImage for Android now also
exists.

25

Your App

OpenGL API
glTexImage2D()
glDrawElements
…

GPU Image

http://www.sunsetlakesoftware.com/2012/02/12/introducing-gpuimage-framework
https://github.com/CyberAgent/android-gpuimage

GPUImage

• GPUImage can do many things OpenCV can do, but much
faster through the GPU -
• Color conversions (grayscale, RGB2HSV, etc.)
• Image processing (image warping, cropping, blurring, edges, etc.)
• Blending (drawing lines, points, etc.)
• Visual effects (pixellate, sketch, etc.)
• Computer vision (interest point detectors, hough transform, etc.)

• Check out - https://github.com/BradLarson/GPUImage for a
full description of the capabilities.

26

https://github.com/BradLarson/GPUImage

GPUImage - Example Filters

27

GPUImage vs CoreImage

• There exists an internal framework in iOS called CoreImage
that can do some of the things GPUImage can do.

• GPUImage is preferred in vision applications as,
• You can seamlessly integrate filters with CPU C++ code using
GPUImageRawData . (more on this in later lectures)

• All filters are written in OpenGL ES, so you can write custom filters if
necessary.

• Code is more portable (i.e. Android).

28

GPUImage

29

GPUImage in Xcode

30

Playing with GPUImage

• We are now going to have a play with GPUImage.
• On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Intro_GPUImage

• Or better yet, if you have git installed you can type from the
command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Intro_GPUImage.git

https://github.com/slucey-cs-cmu-edu/Intro_GPUImage
https://github.com/slucey-cs-cmu-edu/Intro_GPUImage.git

Playing with GPUImage

Playing with GPUImage

GPUImage for Movies

Movies with GPUImage

• On your browser please go to the address,

https://github.com/slucey-cs-cmu-edu/Movie_GPUImage

• Or better yet, if you have git installed you can type from the
command line.

$ git clone https://github.com/slucey-cs-cmu-edu/Movie_GPUImage

https://github.com/slucey-cs-cmu-edu/Movie_GPUImage
https://github.com/slucey-cs-cmu-edu/Movie_GPUImage

GPUImage2

• GPUImage 2 was released in 2016…
• Second generation of GPUImage framework for SWIFT.

• Check out on https://github.com/BradLarson/GPUImage2

37

https://github.com/BradLarson/GPUImage2

What About?

GPUImage +

For more information on MetalGL check out - https://metalgl.com/

https://metalgl.com/

Supposedly 3x Faster!!

For more information on MetalGL check out - https://metalgl.com/

https://metalgl.com/

For more information on MetalGL check out - https://metalgl.com/

https://metalgl.com/

More Examples to Play With…

• Download the complete GPUImage library from,

• https://github.com/BradLarson/GPUImage

• In there you will find a fair amount of example code,
• SimpleVideoFileFilter
• FilterShowCase
• MultiViewFilterExample
• BenchmarkSuite
• RawDataTest

https://github.com/BradLarson/GPUImage

