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Today

• CCD vs CMOS cameras. 

• Rolling Shutter Epipolar Geometry 

• Inertial Measurement Units (IMU)
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Figure 1. The pinhole imaging model, from Forsyth & Ponce.

Let us begin by considering a mathematical description of the imaging
process through this idealized camera. We will consider issues like lens dis-
tortion subsequently.

The pinhole camera or the projective camera as it is known images the
scene by applying a perspective projection to it. In the following we shall re-
fer to scene coordinates with upper case roman letters, {X, Y, Z, . . .}. Image
coordinates will be referred to using lower case roman letters, {x, y, z, . . .}.
Vectors shall be denoted by boldfaced symbols, e.g., X or x. (In class, when
writing on the blackboard, I will put a tilde underneath the corresponding
symbols to denote a vector.)

The scene is three dimensional, whereas the image is located in a two
dimensional plane. Hence the perspective projection maps the 3D space to
a 2D plane.

(X, Y, Z)>
Projection������! (x, y)>

The equations of perspective projections are given by

(1.1) x = f
X

Z
y = f

Y

Z
here, f is the focal length of the camera, i.e., the distance between the image
plane and the pinhole.

The process is illustrated in figure 2.
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Figure 2. Image formation in a projective camera.

(Taken from Forsyth & Ponce)
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Digital Cameras

• All digital cameras rely on the photoelectric effect to create 
electrical signal from light.  

• CCD (charge coupled device) and CMOS (complementary metal 
oxide semiconductor) are the two most common image sensors 
found in digital cameras.  

• Both invented in the late 60s early 70s. 

(Taken from https://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/) 

https://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/


CCD versus CMOS

• CMOS and CCD imagers differ in the way that signals are 
converted from signal charge.  

• CMOS imagers are inherently more parallel than CCDs.  

• Consequently, high speed CMOS imagers can be designed to 
have much lower noise than high speed CCDs. 

(Taken from https://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/) 

https://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/


CCD versus CMOS

• CCD used to be the image sensor of choice as it gave far 
superior images with the fabrication technology available.  

• CMOS was of interest with the the advent of mobile phones. 
• CMOS promised lower power consumption.  
• lowered fabrication costs (reuse mainstream logic and memory device 

fabrication).  

• An enormous amount of investment was made to develop and 
fine tune CMOS imagers.  

• As a result we witnessed great improvements in image quality, 
even as pixel sizes shrank.  

• In the case of high volume consumer area imagers, CMOS 
imagers outperform CCDs based on almost every performance 
parameter.  

(Taken from https://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/) 

https://www.teledynedalsa.com/imaging/knowledge-center/appnotes/ccd-vs-cmos/




Taken from: http://9to5mac.com/2014/09/23/iphone-6-camera-compared-to-all-previous-iphones-gallery/

http://9to5mac.com/2014/09/23/iphone-6-camera-compared-to-all-previous-iphones-gallery/


New Developments - iPhone 7

9Taken from: http://vrscout.com/news/apple-duel-camera-iphone-for-augmented-reality/

• Apple just released the iPhone 7 with new dual lens camera.   
• Rumored that advances in the camera are based on the 2015 

acquisition of Linx (Israeli startup).  
• Image quality “closest” attempt yet to DSLR on mobile device. 

http://vrscout.com/news/apple-duel-camera-iphone-for-augmented-reality/
http://appleinsider.com/articles/15/04/14/apple-buys-dslr-quality-camera-tech-with-20m-acquisition-of-israeli-firm-linx-imaging


Today

• CCD vs CMOS cameras. 

• Rolling Shutter Epipolar Geometry 

• Inertial Measurement Units (IMU)
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from inertial measurement sensors. The readings of accelerom-
eters capture not only linear acceleration of cameras, but
also gravity and acceleration caused by rotation. Besides,
acceleration readings must be integrated twice to obtain the
camera translation, which makes the estimation more prone
to measurement noise. Even if we can obtain accurate camera
translation, the video rectification and stabilization problem is
still ill-posed since it is impossible to obtain depth information
for every image pixel. Dense warping [3] and image-based ren-
dering [7] have been applied to approximate the stabilization
results based on sparse 3-D scene reconstruction. However,
they are computationally prohibitive for many handheld plat-
forms.
Fortunately, camera shake and rolling shutter effects are

caused primarily by camera rotations. In fact, [4] and [8]
have shown that taking only camera rotations into account is
sufficient to produce satisfactory videos.
In our paper, we also use gyroscope readings. In the

gyroscope-only method [4] the camera rotation is directly
estimated by integrating the gyroscope readings (angular ve-
locities). Another recent approach [5] uses both gyroscope
and accelerometer readings to estimate the camera rotations
based on EKF. The gyroscope readings are used as the control
inputs in the dynamic motion model. The authors assume that
users usually try to hold the camera in a steady position so the
gravity is approximately the only source in the accelerometer
measurements. Thus the accelerometer readings can be used
as measurements of the camera rotation.
Our 3-D orientation estimation is also based on EKF, but

our measurement model is quite different from [5]. We find
that the linear acceleration of the camera and the acceleration
caused by rotation are sometimes non-negligible. Thus we do
not use the accelerometer readings as orientation measure-
ments. Instead, we use the tracked feature points extracted
from the video frames, which provide accurate geometric clue
for the estimation of the camera motion. Based on the fact
that matched feature points can be related by a homographic
transformation under pure rotational motion, the relative rota-
tion between consecutive frames can be measured [9].
Motion estimation based on visual and inertial measurement

sensors have been extensively studied in the problem of
simultaneous localization and mapping (SLAM) in robotics
[10]. However, the rolling shutter camera model has never been
considered in SLAM before. Our algorithm is the first EKF-
based motion estimation method for rolling-shutter cameras
that uses visual and inertial measurements. In our measure-
ment model, tracked feature points in consecutive frames are
only linked by the relative camera rotation between them.
Therefore, our algorithm can be classified as a relative motion
estimation method [11], [12].

III. CAMERA MODEL

For rolling shutter cameras, each row in a frame is exposed
at a different time. Fig. 2 illustrates the image capture model
of a rolling shutter camera, where tr is the total readout time
in each frame and tid is the inter-frame idle time. Thus for

Fig. 2. Rolling shutter cameras sequentially expose rows. tr + tid =
1

frame per second .

an image point u = [u0, u1]T in frame i, the exposure time is
t(u, i) = ti + tr ×

u1

h
, where ti is the timestamp of frame i

and h is the total number of rows in each frame.
Assume the intrinsic camera matrix is K, the sequences

of rotation matrices and translation vectors of the camera are
R(t) and l(t). A 3-D point x and its projection image u in
frame i should satisfy the following equation:

u ∼ KR(t(u, i))(x + l(t(u, i))) (1)

where ∼ indicates equality up to scale.
Usually there is a constant delay td between the recorded

timestamps of gyroscopes and videos. Thus using the times-
tamps of gyroscopes as reference, the exposure time equation
should be modified as

t(u, i) = ti + td + tr ×
uy

h
. (2)

When pure rotation is considered, the translation vector
remains unchanged and thus the image of a certain scene point
in one frame can be mapped to another frame through a 3× 3
homography matrix

u′ ∼ KR(t(u′, i))RT (t(u, j))K−1u (3)

where u′ and u are the images in frame i and j respectively.

IV. ONLINE ROTATION ESTIMATION
Our online motion estimation is based on EKF. Due to

the special property of rolling shutter camera model and the
pure rotation motion model, state definition and the structure
of dynamical and measurement model need to be designed
carefully.

A. State Vector and Dynamic Bayesian Network
The gyroscope in cell phone cameras usually has a higher

sampling frequency (around 100 Hz) than the video frame rate,
as illustrated in Fig. 3.
In Fig. 3, several gyroscope readings are grouped together

since they are used to compute the camera rotations for the
same frame during its corresponding exposure time. Note that
due to the fact that the idle time tid is large enough so that
no pixels in frame i but only several pixels in frame i+1 are
exposed after τk+3. Thus ωk+3 is relegated to group i + 1.
Further we assume that a certain 3-D feature point has its
projection at u in frame i and u′ in frame i + 1. Without

Rolling shutter cameras sequentially expose rows. 

Taken from: Jia and Evans “Probabilistic 3-D Motion Estimation for Rolling Shutter Video Rectification from Visual and Inertial Measurements” MMSP 2012. 

tr + tid =

1

frames per second

http://www.apple.com
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to measurement noise. Even if we can obtain accurate camera
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still ill-posed since it is impossible to obtain depth information
for every image pixel. Dense warping [3] and image-based ren-
dering [7] have been applied to approximate the stabilization
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forms.
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caused primarily by camera rotations. In fact, [4] and [8]
have shown that taking only camera rotations into account is
sufficient to produce satisfactory videos.
In our paper, we also use gyroscope readings. In the

gyroscope-only method [4] the camera rotation is directly
estimated by integrating the gyroscope readings (angular ve-
locities). Another recent approach [5] uses both gyroscope
and accelerometer readings to estimate the camera rotations
based on EKF. The gyroscope readings are used as the control
inputs in the dynamic motion model. The authors assume that
users usually try to hold the camera in a steady position so the
gravity is approximately the only source in the accelerometer
measurements. Thus the accelerometer readings can be used
as measurements of the camera rotation.
Our 3-D orientation estimation is also based on EKF, but

our measurement model is quite different from [5]. We find
that the linear acceleration of the camera and the acceleration
caused by rotation are sometimes non-negligible. Thus we do
not use the accelerometer readings as orientation measure-
ments. Instead, we use the tracked feature points extracted
from the video frames, which provide accurate geometric clue
for the estimation of the camera motion. Based on the fact
that matched feature points can be related by a homographic
transformation under pure rotational motion, the relative rota-
tion between consecutive frames can be measured [9].
Motion estimation based on visual and inertial measurement

sensors have been extensively studied in the problem of
simultaneous localization and mapping (SLAM) in robotics
[10]. However, the rolling shutter camera model has never been
considered in SLAM before. Our algorithm is the first EKF-
based motion estimation method for rolling-shutter cameras
that uses visual and inertial measurements. In our measure-
ment model, tracked feature points in consecutive frames are
only linked by the relative camera rotation between them.
Therefore, our algorithm can be classified as a relative motion
estimation method [11], [12].

III. CAMERA MODEL

For rolling shutter cameras, each row in a frame is exposed
at a different time. Fig. 2 illustrates the image capture model
of a rolling shutter camera, where tr is the total readout time
in each frame and tid is the inter-frame idle time. Thus for

Fig. 2. Rolling shutter cameras sequentially expose rows. tr + tid =
1

frame per second .

an image point u = [u0, u1]T in frame i, the exposure time is
t(u, i) = ti + tr ×

u1

h
, where ti is the timestamp of frame i

and h is the total number of rows in each frame.
Assume the intrinsic camera matrix is K, the sequences

of rotation matrices and translation vectors of the camera are
R(t) and l(t). A 3-D point x and its projection image u in
frame i should satisfy the following equation:

u ∼ KR(t(u, i))(x + l(t(u, i))) (1)

where ∼ indicates equality up to scale.
Usually there is a constant delay td between the recorded

timestamps of gyroscopes and videos. Thus using the times-
tamps of gyroscopes as reference, the exposure time equation
should be modified as

t(u, i) = ti + td + tr ×
uy

h
. (2)

When pure rotation is considered, the translation vector
remains unchanged and thus the image of a certain scene point
in one frame can be mapped to another frame through a 3× 3
homography matrix

u′ ∼ KR(t(u′, i))RT (t(u, j))K−1u (3)

where u′ and u are the images in frame i and j respectively.

IV. ONLINE ROTATION ESTIMATION
Our online motion estimation is based on EKF. Due to

the special property of rolling shutter camera model and the
pure rotation motion model, state definition and the structure
of dynamical and measurement model need to be designed
carefully.

A. State Vector and Dynamic Bayesian Network
The gyroscope in cell phone cameras usually has a higher

sampling frequency (around 100 Hz) than the video frame rate,
as illustrated in Fig. 3.
In Fig. 3, several gyroscope readings are grouped together

since they are used to compute the camera rotations for the
same frame during its corresponding exposure time. Note that
due to the fact that the idle time tid is large enough so that
no pixels in frame i but only several pixels in frame i+1 are
exposed after τk+3. Thus ωk+3 is relegated to group i + 1.
Further we assume that a certain 3-D feature point has its
projection at u in frame i and u′ in frame i + 1. Without

Taken from: Jia and Evans “Probabilistic 3-D Motion Estimation for Rolling Shutter Video Rectification from Visual and Inertial Measurements” MMSP 2012. 
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Rolling-Shutter Effect
• A drawback to CMOS sensors is 

the “rolling-shutter effect”.  
• CMOS captures images by 

scanning one line of the frame at 
a time.  

• If anything is moving fast, then it 
will lead to weird distortions in still 
photos, and to rather odd effects 
in video.  

• Check out the following video 
taken with the iPhone 4 CCD 
camera.   

• CCD-based cameras often use a 
“global” shutter to circumvent this 
problem. 

Taken from: http://www.wired.com/2011/07/iphones-rolling-shutter-captures-amazing-slo-mo-
guitar-string-vibrations/

http://www.wired.com/2011/07/iphones-rolling-shutter-captures-amazing-slo-mo-guitar-string-vibrations/
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Rolling Shutter Effect = “Aliasing”

• Rolling Shutter Effect is an example of a broader phenomena 
regularly studied in Signal Processing called “Aliasing”.  

• Common phenomenon  
• Wagon wheels rolling the wrong way in movies. 
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Rectifying Rolling Shutter

• What do you think the camera motion was here?

15

Stabilizing Cell Phone Video using Inertial Measurement Sensors

Gustav Hanning, Nicklas Forslöw, Per-Erik Forssén, Erik Ringaby, David Törnqvist, Jonas Callmer
Department of Electrical Engineering

Linköping University
http://www.liu.se/forskning/foass/per-erik-forssen/VGS

Abstract

We present a system that rectifies and stabilizes video

sequences on mobile devices with rolling-shutter cameras.

The system corrects for rolling-shutter distortions using

measurements from accelerometer and gyroscope sensors,

and a 3D rotational distortion model. In order to obtain

a stabilized video, and at the same time keep most content

in view, we propose an adaptive low-pass filter algorithm

to obtain the output camera trajectory. The accuracy of the

orientation estimates has been evaluated experimentally us-

ing ground truth data from a motion capture system. We

have conducted a user study, where the output from our sys-

tem, implemented in iOS, has been compared to that of three

other applications, as well as to the uncorrected video. The

study shows that users prefer our sensor-based system.

1. Introduction

Most mobile video-recording devices of today make use
of CMOS sensors with rolling-shutter (RS) readout [6]. An
RS camera captures video by exposing every frame line-by-
line from top to bottom. This is in contrast to a global shut-

ter, where an entire frame is acquired at once.
The RS technique gives rise to image distortions in sit-

uations where either the device or the target is moving.
Figure 1 shows an example of how an image is distorted
when using a rolling shutter. Here, vertical lines such as
the flag poles appear slanted as a result of panning the cam-
era quickly from left to right during recording. Recording
video by hand also leads to visible frame-to-frame jitter.
The recorded video is perceived as “shaky” and is not very
enjoyable to watch.

Since mobile video-recording devices are so common,
there is an interest in correcting these types of distor-
tions. The inertial sensors (accelerometers and gyroscopes)
present in many of the new devices provide a new way of
doing this: Using the position and/or orientation of the de-
vice, as sensed during recording, the motion induced distor-
tions can be compensated for in a post-processing step.

Figure 1. An example of rolling-shutter distortion. Top: Frame

from a video sequence recorded with an iPod touch. Bottom: Rec-

tification using the 3D rotation model and inertial measurements.

1.1. Related Work

Early work on modeling the distortions caused by a
rolling-shutter exposure is described in [7].

Rolling-shutter video has previously been rectified using
image measurements. Two recent, state-of-the-art methods
are described in [3, 5]. To perform rectification, we use
the 3D rotational model introduced in [5], but use inertial
sensor data instead of image measurements.

For stabilization we use a 3D rotation-based correction
as in [13, 14], and a dynamical model derived from [17].
Differences compared to [13, 14] is the use of inertial sen-
sor data instead of image measurements, and an adaptive

1

Taken from: Hanning et al. “Stabilizing Cell Phone Video using Inertial Measurement Sensors” in ICCV 2011 Workshop. 
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High-Frame Rate Cameras

• Another way around this is to 
create higher-frame rate cameras.  

• Increasingly seeing faster and 
faster CMOS cameras.  

• Opening up other exciting 
opportunities in computer vision.  

• However, really fast motions still 
need an understanding of the 
rolling shutter effect. 
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Rectifying Rolling Shutter

• Result from rectification, 

17

Taken from: Hanning et al. “Stabilizing Cell Phone Video using Inertial Measurement Sensors” in ICCV 2011 Workshop. 
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Abstract

We present a system that rectifies and stabilizes video

sequences on mobile devices with rolling-shutter cameras.

The system corrects for rolling-shutter distortions using

measurements from accelerometer and gyroscope sensors,

and a 3D rotational distortion model. In order to obtain

a stabilized video, and at the same time keep most content

in view, we propose an adaptive low-pass filter algorithm

to obtain the output camera trajectory. The accuracy of the

orientation estimates has been evaluated experimentally us-

ing ground truth data from a motion capture system. We

have conducted a user study, where the output from our sys-

tem, implemented in iOS, has been compared to that of three

other applications, as well as to the uncorrected video. The

study shows that users prefer our sensor-based system.

1. Introduction

Most mobile video-recording devices of today make use
of CMOS sensors with rolling-shutter (RS) readout [6]. An
RS camera captures video by exposing every frame line-by-
line from top to bottom. This is in contrast to a global shut-

ter, where an entire frame is acquired at once.
The RS technique gives rise to image distortions in sit-

uations where either the device or the target is moving.
Figure 1 shows an example of how an image is distorted
when using a rolling shutter. Here, vertical lines such as
the flag poles appear slanted as a result of panning the cam-
era quickly from left to right during recording. Recording
video by hand also leads to visible frame-to-frame jitter.
The recorded video is perceived as “shaky” and is not very
enjoyable to watch.

Since mobile video-recording devices are so common,
there is an interest in correcting these types of distor-
tions. The inertial sensors (accelerometers and gyroscopes)
present in many of the new devices provide a new way of
doing this: Using the position and/or orientation of the de-
vice, as sensed during recording, the motion induced distor-
tions can be compensated for in a post-processing step.

Figure 1. An example of rolling-shutter distortion. Top: Frame

from a video sequence recorded with an iPod touch. Bottom: Rec-

tification using the 3D rotation model and inertial measurements.

1.1. Related Work

Early work on modeling the distortions caused by a
rolling-shutter exposure is described in [7].

Rolling-shutter video has previously been rectified using
image measurements. Two recent, state-of-the-art methods
are described in [3, 5]. To perform rectification, we use
the 3D rotational model introduced in [5], but use inertial
sensor data instead of image measurements.

For stabilization we use a 3D rotation-based correction
as in [13, 14], and a dynamical model derived from [17].
Differences compared to [13, 14] is the use of inertial sen-
sor data instead of image measurements, and an adaptive

1
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Reminder: Cheat Sheet

Hartley & Zisserman PrinceDescription

3D Point X

2D Point x

w

x

Rotation matrix R

Intrinsics matrix K

⌦

�

⇤

Homography matrix H

translation vector t ⌧



First camera:

Second camera:

Substituting:

This is a mathematical relationship between the points in the two 
images, but it’s not in the most convenient form.

Reminder: The Essential Matrix

Adapted from: Computer vision: models, learning and inference.  Simon J.D. Prince 



Reminder: The Essential Matrix

Adapted from: Computer vision: models, learning and inference.  Simon J.D. Prince 



The cross product term can be expressed as a matrix

Defining:

We now have the essential matrix relation

Reminder: The Essential Matrix

Adapted from: Computer vision: models, learning and inference.  Simon J.D. Prince 



Epipolar Geometry for Rolling Shutter

• Recently Dai et al. (2016) developed Generalized Epipolar 
Geometry for Rolling Shutter Camera.  

• Assuming linear rolling shutter, 

22
Taken from: Y. Dai, H. Li and L. Kneip “Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry”, arXiv preprint arXiv:1605.00475 (2016). 

�1x̃1 = w + ⌫1d1

�2x̃2 = ⌦w + ⌧ + ⌫2d2

⌫ ! index to the scan line in the image

di ! 3D velocity for i-th viewpoint

http://arxiv.org/abs/1605.00475
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⌫1 ⌫2

[u0
i, v

0
i, 1]

T , we have the standard essential matrix constrain-
t: x

0T
i Exi = 0. From a sufficient number of correspon-

dences one can solve for E. Once E is obtained, decom-
posing E according to E = [t]⇥R leads to the relative pose
(i.e. R and t).

For a rolling-shutter camera, unfortunately, such a glob-
al 3-by-3 essential matrix does not exist. This is primarily
because an RS camera is not a central projection camera;
every scanline has its own distinct local pose. As a result,
every pair of feature correspondences may give rise to a d-
ifferent “essential matrix”. Formally, for xi $ x

0
i, we have

x

0T
i Eui,u0

i
xi = 0. (5)

Note that E is dependent of the scanlines ui and u0
i. In other

words, there does not exist a single global 3 ⇥ 3 essential
matrix for a pair of RS images.

Figure-2 shows that despite the fact that different scan-
lines possess different centers of projection, for a pair of
feature correspondences the co-planarity relationship still
holds, because the two feature points in image planes corre-
spond to the same 3D point in space. As such, the concep-
t of two-view epipolar relationship should still exist. Our
next task is to derive such a generalized epipolar relation.

Figure 2. This figure shows that different scanlines in a RS image
have different effective optical centers. For any pair of feature cor-
respondences (indicated by red ‘x’s in the picture), a co-planarity
relationship however still holds.

Given two scanlines ui, uj and the corresponding camera
poses Pui = [Rui , tui ] and Puj = [Ruj , tuj ], we have

Euiuj = [tuj �RujR
T
ui
tui ]⇥RujR

T
ui
. (6)

Rolling Shutter Relative Pose. Note, given a pair of fea-
ture correspondences xi $ x

0
i, one can establish the fol-

lowing RS epipolar equation: x0T
i Euiu0

i
xi = 0. Given suffi-

cient pairs of correspondences; each pair contributes to one
equation over the unknown parameters; our goal is to solve
for the relative pose between the two RS images.

We set the first camera’s pose at [I,0], and the second
camera at [R, t]. We denote the two cameras’ inter-scanline
rotational (angular) velocities as w1, and w2, and their lin-
ear translational velocities as d1 and d2. Taking a uniform
RS camera as an example, the task of rolling shutter rela-
tive pose is to find the unknowns {R, t,w1,w2,d1,d2}.

In total there are 2 ⇥ 12 � 6 � 1 = 17 non-trivial vari-
ables (excluding the gauge freedom of the first camera, and
a global scale). Collecting at least 17 equations in general
configuration, it is possible to solve this system of (gener-
ally nonlinear) equations over the 17 unknown parameters.
In this paper, we will show how to derive linear N-point al-
gorithms for rolling shutter cameras, as an analogy to the
linear 8-point algorithm for the case of a pinhole camera.

4. Rolling-Shutter Essential Matrices
In this section, we will generalize the conventional 3⇥ 3

essential matrix for perspective cameras to 4⇥4, 5⇥5, 6⇥6,
and 7 ⇥ 7 matrices for different types of Rolling-Shutter
(RS) and Push-Broom (PB) cameras. The reason for in-
cluding push-broom cameras will be made clear soon.

4.1. A 5⇥ 5 essential matrix for linear RS cameras

For a linear rolling shutter camera, since the inter-
scanline motion is a pure translation, there are four parame-
ter vectors to be estimated, namely{R, t,d1,d2}. The total
degree of freedom of the unknowns is 3+3+3+3�1 = 11.
(the last ‘-1’ accounts for a global scale).

The epipolarity defined between the ui-th scanline of the
first RS frame and the u0

i-th scanline of the second RS frame
is represented as Euiu0

i
= [tuiu0

i
]⇥Ruiu0

i
, where the trans-

lation tuiu0
i
= t+ u0

id2 � uiRd1. This translates into

2

4
u0
i

v0i
1

3

5
T

[t+ u0
id2 � uiRd1]⇥R

2

4
ui

vi
1

3

5
= 0. (7)

Expanding this scanline epipolar equation, one can obtain
the following 5⇥ 5 matrix form:
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(8)
where the entries of the 5⇥5 matrix F = [fi,j ] are functions
of the 11 unknown parameters {R, t,d1,d2}. In total, there
are 21 homogeneous variables, thus a linear 20-point solver
must exist to solve for this hyperbolic essential matrix.

Proof. By redefining d1  Rd1, we easily obtain

Euiu0
i

= ([t]⇥ + u0
i[d2]⇥ � ui[d1]⇥)R. (9)

Denoting E0 = [t]⇥R, E1 = [d1]⇥R and E2 = [d2]⇥R,
we have:

[u0
i, v

0
i, 1](E0 + u0

iE2 � uiE1)[ui, vi, 1]
T
= 0. (10)

Taken from: Y. Dai, H. Li and L. Kneip “Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry”, arXiv preprint arXiv:1605.00475 (2016). 

E(⌫1, ⌫2) = (⌧ + ⌫2d2 � ⌫1⌦d1)⇥⌦

http://arxiv.org/abs/1605.00475
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i Exi = 0. From a sufficient number of correspon-

dences one can solve for E. Once E is obtained, decom-
posing E according to E = [t]⇥R leads to the relative pose
(i.e. R and t).

For a rolling-shutter camera, unfortunately, such a glob-
al 3-by-3 essential matrix does not exist. This is primarily
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every scanline has its own distinct local pose. As a result,
every pair of feature correspondences may give rise to a d-
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i. In other

words, there does not exist a single global 3 ⇥ 3 essential
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Figure-2 shows that despite the fact that different scan-
lines possess different centers of projection, for a pair of
feature correspondences the co-planarity relationship still
holds, because the two feature points in image planes corre-
spond to the same 3D point in space. As such, the concep-
t of two-view epipolar relationship should still exist. Our
next task is to derive such a generalized epipolar relation.
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respondences (indicated by red ‘x’s in the picture), a co-planarity
relationship however still holds.

Given two scanlines ui, uj and the corresponding camera
poses Pui = [Rui , tui ] and Puj = [Ruj , tuj ], we have
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ture correspondences xi $ x
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i, one can establish the fol-

lowing RS epipolar equation: x0T
i Euiu0
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xi = 0. Given suffi-

cient pairs of correspondences; each pair contributes to one
equation over the unknown parameters; our goal is to solve
for the relative pose between the two RS images.

We set the first camera’s pose at [I,0], and the second
camera at [R, t]. We denote the two cameras’ inter-scanline
rotational (angular) velocities as w1, and w2, and their lin-
ear translational velocities as d1 and d2. Taking a uniform
RS camera as an example, the task of rolling shutter rela-
tive pose is to find the unknowns {R, t,w1,w2,d1,d2}.

In total there are 2 ⇥ 12 � 6 � 1 = 17 non-trivial vari-
ables (excluding the gauge freedom of the first camera, and
a global scale). Collecting at least 17 equations in general
configuration, it is possible to solve this system of (gener-
ally nonlinear) equations over the 17 unknown parameters.
In this paper, we will show how to derive linear N-point al-
gorithms for rolling shutter cameras, as an analogy to the
linear 8-point algorithm for the case of a pinhole camera.

4. Rolling-Shutter Essential Matrices
In this section, we will generalize the conventional 3⇥ 3

essential matrix for perspective cameras to 4⇥4, 5⇥5, 6⇥6,
and 7 ⇥ 7 matrices for different types of Rolling-Shutter
(RS) and Push-Broom (PB) cameras. The reason for in-
cluding push-broom cameras will be made clear soon.

4.1. A 5⇥ 5 essential matrix for linear RS cameras

For a linear rolling shutter camera, since the inter-
scanline motion is a pure translation, there are four parame-
ter vectors to be estimated, namely{R, t,d1,d2}. The total
degree of freedom of the unknowns is 3+3+3+3�1 = 11.
(the last ‘-1’ accounts for a global scale).

The epipolarity defined between the ui-th scanline of the
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is represented as Euiu0
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where the entries of the 5⇥5 matrix F = [fi,j ] are functions
of the 11 unknown parameters {R, t,d1,d2}. In total, there
are 21 homogeneous variables, thus a linear 20-point solver
must exist to solve for this hyperbolic essential matrix.

Proof. By redefining d1  Rd1, we easily obtain

Euiu0
i

= ([t]⇥ + u0
i[d2]⇥ � ui[d1]⇥)R. (9)

Denoting E0 = [t]⇥R, E1 = [d1]⇥R and E2 = [d2]⇥R,
we have:
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0
i, 1](E0 + u0

iE2 � uiE1)[ui, vi, 1]
T
= 0. (10)

Taken from: Y. Dai, H. Li and L. Kneip “Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry”, arXiv preprint arXiv:1605.00475 (2016). 

How many degrees of freedom?

E(⌫1, ⌫2) = (⌧ + ⌫2d2 � ⌫1⌦d1)⇥⌦

http://arxiv.org/abs/1605.00475
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Table 1. A hierarchy of generalized essential matrices for different types of rolling-shutter and push-broom cameras.
Camera Model Essential Matrix Monomials Degree-of-freedom Linear Algorithm Non-linear Algorithm Motion Parameters

Perspective camera

2

4
f11 f12 f13
f21 f22 f23
f31 f32 f33

3

5 (ui, vi, 1) 32 = 9 8-point 5-point R, t

Linear push broom

2

664

0 0 f13 f14
0 0 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44

3

775 (uivi, ui, vi, 1) 12 = 42 � 22 11-point 11-point R, t,d1,d2

Linear rolling shutter

2

6664

0 0 f13 f14 f15
0 0 f23 f24 f25
f31 f32 f33 f34 f35
f41 f42 f43 f44 f45
f51 f52 f53 f54 f55

3

7775
(u2

i , uivi, ui, vi, 1) 21 = 52 � 22 20-point 11-point R, t,d1,d2

Uniform push broom

2

666664

0 0 f13 f14 f15 f16
0 0 f23 f24 f25 f26
f31 f32 f33 f34 f35 f36
f41 f42 f43 f44 f45 f46
f51 f52 f53 f54 f55 f56
f61 f62 f63 f64 f65 f66

3

777775
(u2

i vi, u
2
i , uivi, ui, vi, 1) 32 = 62 � 22 31-point 17-point R, t,w1,w2,d1,d2

Uniform rolling shutter

2

66666664

0 0 f13 f14 f15 f16 f17
0 0 f23 f24 f25 f26 f27
f31 f32 f33 f34 f35 f36 f37
f41 f42 f43 f44 f45 f46 f47
f51 f52 f53 f54 f55 f56 f57
f61 f62 f63 f64 f65 f66 f67
f71 f72 f73 f74 f75 f76 f77

3

77777775

(u3
i , u

2
i vi, u

2
i , uivi, ui, vi, 1) 45 = 72 � 22 44-point 17-point R, t,w1,w2,d1,d2

sential matrices, we can easily develop efficient numerical
algorithms to solve the rolling shutter relative pose prob-
lem. Similar to the 8-point linear algorithm in the perspec-
tive case, we derive a 20-point linear algorithm for linear
RS cameras, and a 44-point linear algorithm for uniform
RS cameras. We also develop non-linear solvers for both
cases (by minimizing the geometrically meaningful Samp-
son error). Our non-linear solvers work for the minimum
number of feature points, hence are relevant for RANSAC.

Experiments on both synthetic RS datasets and real RS
images have validated the proposed theory and algorithm-
s. To the best of our knowledge, this is the first work that
provides a unified framework and practical solutions to the
rolling shutter relative pose problem. Our 5 ⇥ 5 and 7 ⇥ 7

RS essential matrices are original; they were not reported
before in computer vision literature. Inspired by this suc-
cess, we further discover that there also exist practically
meaningful 4⇥ 4 and 6⇥ 6 generalized essential matrices,
corresponding to linear, and uniform push-broom cameras,
respectively. Together, this paper provides a unified frame-
work for solving the relative pose problems with rolling-
shutter or push-broom cameras under different yet practi-
cally relevant conditions. It also provides new geometric
insights into the connection between different types of nov-
el camera geometries.

Table-1 gives a brief summary of the new results discov-
ered in this paper. Details will be explained in Section-4.

1.1. Related work

The present work discusses a fundamental geometric
problem in the context of rolling shutter cameras. The
most notable, early related work is by Geyer et al. [16],
which proposes a projection model for rolling shutter cam-
eras based on a constant velocity motion model. This fun-
damental idea of a compact, local expression of camer-
a dynamics has regained interest through Ait-Aider et al.

[1], who solved the absolute pose problem through itera-
tive minimization, and for the first time described the higher
density of the temporal sampling of a rolling shutter mech-
anism as an advantage rather than a disadvantage. Albl et
al.[3] proposed a two-step procedure in which the pose is
first initialized using a global shutter model, and then re-
fined based on a rolling shutter model and a small-rotation
approximation. Saurer et al. [22] solved the problem in a
single shot, however under the simplifying assumption that
the rotational velocity of the camera is zero. Sunghoon et
al. [11] also employed a linear model, however with the fi-
nal goal of dense depth estimation from stereo. Grundmann
et al. proposed a method to automatic rectify rolling shutter
distortion from feature correspondences only [5]. To date,
a single-shot, closed-form solution to compute the relative
pose for a rolling shutter camera remains an open problem,
thus underlining the difficulty of the geometry even in the
first-order case.

Rolling shutter cameras can be regarded as general
multi-perspective cameras, and are thus closely related to
several other camera models. For instance, Gupta and Hart-
ley [6] introduced the linear push-broom model where—
similar to rolling shutter cameras—the vertical image coor-
dinate becomes correlated to the time at which the corre-
sponding row is sampled. This notably leads to a quadrat-
ic essential polynomial and a related, higher-order essen-
tial matrix. We establish the close link to this model and
contribute to the classification in [27] by presenting a novel
hierarchy of higher order generalized essential matrices.

Moving towards iterative non-linear refinement method-
s permits a more general inclusion of higher-order motion
models. Hedborg et al. [9, 10] introduced a bundle ad-
justment framework for rolling shutter cameras by relying
on the SLERP model for interpolating rotations. Magarand
et al. [15] introduced an approach for global optimization
of pose and dynamics from a single rolling shutter image.

Taken from: Y. Dai, H. Li and L. Kneip “Rolling Shutter Camera Relative Pose: Generalized Epipolar Geometry”, arXiv preprint arXiv:1605.00475 (2016). 
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Today

• CCD vs CMOS cameras. 

• Rolling Shutter Epipolar Geometry 

• Inertial Measurement Units (IMU)



Inertial Measurement Unit
• Measures a device’s specific force, angular rate & magnetic field.  
• Composed of, 

• Accelerometer.  
• Gyroscope.  
• Magnetometer. 

• Historically used heavily within navigation and robotic systems.  
• More recently have become common place in smart devices. 

27



Accelerometer
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Accelerometer
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Accelerometer

28
What can’t you measure?



Gyroscope
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IMU Example in iOS

• Good example of using IMU in iOS can be found at,   

https://github.com/nscookbook/recipe19 

• Or better yet, if you have git installed you can type from the 
command line.  

$ git clone https://github.com/NSCookbook/recipe19.git 

• Good tutorial about how code works can be found at,  

http://nscookbook.com/2013/03/ios-programming-recipe-19-
using-core-motion-to-access-gyro-and-accelerometer/ 

https://github.com/nscookbook/recipe19
https://github.com/NSCookbook/recipe19.git
http://nscookbook.com/2013/03/ios-programming-recipe-19-using-core-motion-to-access-gyro-and-accelerometer/
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Robotics - Monocular Camera + IMU

• Jones, E., Vedaldi, A., Soatto, S.: Inertial structure from motion with autocalibration. 
In: Workshop on Dynamical Vision. (2007) 

• Weiss, S., Achtelik, M.W., Lynen, S., Achtelik, M.C., Kneip, L., Chli, M., Siegwart, R.: 
Monocular vision for long-term micro aerial vehicle state estimation: A compendium. 
Journal of Field Robotics 30(5) (2013) 803–831 

• Nutzi, G., Weiss, S., Scaramuzza, D., Siegwart, R.: Fusion of IMU and vision for 
absolute scale estimation in monocular slam. Journal of Intelligent & Robotic 
Systems 61(1-4) (2011) 287–299 

• Li, M., Kim, B.H., Mourikis, A.I.: Real-time motion tracking on a cellphone using 
inertial sensing and a rolling-shutter camera. In: IEEE International Conference on 
Robotics and Automation (ICRA). (2013) 4712–4719 



Mobile Solutions

• Tanskanen et al. - ETH Zurich 
• Generates accurate point-cloud using SLAM (PTAM) 
• Integrates IMU for scale

P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, M. Pollefeys : Live metric 3d reconstruction on mobile phones. (ICCV 2013)



Mobile Visual SLAM + IMU

P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, M. Pollefeys : Live metric 3d reconstruction on mobile phones. (ICCV 2013)



Mobile Visual SLAM + IMU

P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, M. Pollefeys : Live metric 3d reconstruction on mobile phones. (ICCV 2013)



Mobile Visual SLAM + IMU

P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, M. Pollefeys : Live metric 3d reconstruction on mobile phones. (ICCV 2013)
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Mobile Platform Issues

• IMU and Camera time stamped differently

IMU  
(System timestamps)

Camera
(Relative timestamps)

1045 ns

0 ns

1145 ns

100 ns
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Fig. 2: Showing the result of the normalised cross-correlation of the camera and IMU
signals. Blue-solid line: camera acceleration scaled by initial solution. Red-dashed line:
IMU acceleration. The delay that gives the best alignment here is approximately 40
samples.

3.4 Gravity as a Friend
The above method for finding the delay between two signals can struggle with smaller
motions when data is particularly noisy. Reintroducing gravity has two advantages: (i)
it behaves as an anchor to significantly improve the robustness of the alignment, (ii)
allows us to remove the black box gravity estimation built in to smart devices with
IMUs.

Instead of comparing the estimated camera acceleration and linear IMU accelera-
tion, we add the gravity vector, g, back into the camera acceleration and compare it with
the raw IMU acceleration (which already contains gravity). Grabity is oriented, much
like the vision acceleration, with the IMU acceleration before superimposing
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Fig. 3: The large, low frequency motions of rotation through the gravity field helps
anchor the temporal alignment. Blue solid line: IMU acceleration with gravity removed.
Red dashed line: raw IMU acceleration measuring gravity.

Since the accelerations are in the camera reference frame the reintroduction of grav-
ity essentially captures the pitch and roll of the smart device. The red dashed line in
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signals. Blue-solid line: camera acceleration scaled by initial solution. Red-dashed line:
IMU acceleration. The delay that gives the best alignment here is approximately 40
samples.

3.4 Gravity as a Friend
The above method for finding the delay between two signals can struggle with smaller
motions when data is particularly noisy. Reintroducing gravity has two advantages: (i)
it behaves as an anchor to significantly improve the robustness of the alignment, (ii)
allows us to remove the black box gravity estimation built in to smart devices with
IMUs.

Instead of comparing the estimated camera acceleration and linear IMU accelera-
tion, we add the gravity vector, g, back into the camera acceleration and compare it with
the raw IMU acceleration (which already contains gravity). Grabity is oriented, much
like the vision acceleration, with the IMU acceleration before superimposing
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anchor the temporal alignment. Blue solid line: IMU acceleration with gravity removed.
Red dashed line: raw IMU acceleration measuring gravity.

Since the accelerations are in the camera reference frame the reintroduction of grav-
ity essentially captures the pitch and roll of the smart device. The red dashed line in
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More to read…

• Y. Dai, H. Li and L. Kneip “Rolling 
Shutter Camera Relative Pose: 
Generalized Epipolar Geometry”, arXiv 
preprint arXiv:1605.00475 (2016).  
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Abstract

The vast majority of modern consumer-grade cameras
employ a rolling shutter mechanism. In dynamic geomet-
ric computer vision applications such as visual SLAM, the
so-called rolling shutter effect therefore needs to be prop-
erly taken into account. A dedicated relative pose solver
appears to be the first problem to solve, as it is of eminent
importance to bootstrap any derivation of multi-view ge-
ometry. However, despite its significance, it has received
inadequate attention to date.

This paper presents a detailed investigation of the ge-
ometry of the rolling shutter relative pose problem. We in-
troduce the rolling shutter essential matrix, and establish
its link to existing models such as the push-broom cameras,
summarized in a clean hierarchy of multi-perspective cam-
eras. The generalization of well-established concepts from
epipolar geometry is completed by a definition of the Samp-
son distance in the rolling shutter case. The work is con-
cluded with a careful investigation of the introduced epipo-
lar geometry for rolling shutter cameras on several dedicat-
ed benchmarks.

1. Introduction
Rolling-Shutter (RS) CMOS cameras are getting more

and more popularly used in real-world computer vision ap-
plications due to their low cost and simplicity in design. To
use these cameras in 3D geometric computer vision tasks
(such as 3D reconstruction, object pose, visual SLAM),
the rolling shutter effect (e.g. wobbling) must be careful-
ly accounted for. Simply ignoring this effect and relying
on a global-shutter method may lead to erroneous, undesir-
able and distorted results as reported in previous work (e.g.
[11, 13, 3]).

Recently, many classic 3D vision algorithms have been
adapted to the rolling shutter case (e.g. absolute Pose [15]
[3] [22], Bundle Adjustment [9], and stereo rectification
[21]). Quite surprisingly, no previous attempt has been re-
ported on solving the relative pose problem with a Rolling
Shutter (RS) camera.

(a) linear RS (b) uniform RS

(c) linear PB (d) uniform PB

Figure 1. Example epipolar curves for the camera models dis-
cussed in this paper. Groups of epipolar curves of identical col-
or originate from points on the same row in another image, while
both images are under motion. For linear rolling shutter (a) and
linear push broom cameras (c), the epipolar curves are conic. The
epipolar curves for uniform rolling shutter (b) and uniform push
broom cameras (d) are cubic.

The complexity of this problem stems from the fact that
a rolling shutter camera does not satisfy the pinhole projec-
tion model, hence the conventional epipolar geometry de-
fined by the standard 3 ⇥ 3 essential matrix (in the form of
x

0T
Ex = 0) is no longer applicable. This is mainly because

of the time-varying scaneline-by-scanline image capturing
nature of an RS camera, rendering the imaging process a
non-central one.

In this paper we show that similar epipolar relationships
do exist between two rolling-shutter images. Specifically,
in contrast to the conventional 3 ⇥ 3 essential matrix for
the pinhole camera, we derive a 7⇥ 7 generalized essential
matrix for a uniform rolling-shutter camera, and a 5⇥5 gen-
eralized essential matrix for a linear rolling-shutter camera.
Another result is that, under the rolling-shutter epipolar ge-
ometry, the “epipolar lines” are no longer straight lines, but
become higher-order “epipolar curves” (c.f . Fig. 1).

Armed with these novel generalized rolling-shutter es-
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