
Efficient Interest Point
Detectors & Features

Instructor - Simon Lucey

16-623 - Designing Computer Vision Apps

Today

• Review.

• Efficient Interest Point Detectors.

• Efficient Descriptors.

Review

• In classical Structure from Motion (SfM) computer vision
pipeline there are four steps,

1. Locate interest points.

Review - Harris Corner Detector

Make decision
based on image
structure tensor

H =
X

i2N

@I(xi)
@x

@I(xi)
@x

T

Scalar Measures of “Cornerness"

• A popular measure for measuring a corner ,

tr[H(x,y)] = ||r
x

⇤ I(x, y)||22 + ||r
y

⇤ I(x, y)||22

⇡ �

“Difference of Gaussians (DOG)”

�1 + �2

“Laplacian (L)”

⇡ ||L ⇤ I(x, y)||22

Example - DoGs in SIFT

Review

• In classical Structure from Motion (SfM) computer vision
pipeline there are four steps,

1. Locate interest points.
2. Generate descriptors.

I1 I2

Review - SIFT Descriptor

1. Compute image gradients 2. Pool into local histograms
3. Concatenate histograms
4. Normalize histograms

HOGGlesFigure 3: We visualize some high scoring detections from the deformable parts model [8] for person, chair, and car. Can you
guess which are false alarms? Take a minute to study this figure, then see Figure 16 for the corresponding RGB patches.

Figure 4: In this paper, we present algorithms to visualize
HOG features. Our visualizations are perceptually intuitive
for humans to understand.

object detection features to natural images. Although we fo-
cus on HOG features in this paper, our approach is general
and can be applied to other features as well. We evaluate
our inversions with both automatic benchmarks and a large
human study, and we found our visualizations are percep-
tually more accurate at representing the content of a HOG
feature than existing methods; see Figure 4 for a compar-
ison between our visualization and HOG glyphs. We then
use our visualizations to inspect the behaviors of object de-
tection systems and analyze their features. Since we hope
our visualizations will be useful to other researchers, our
final contribution is a public feature visualization toolbox.

2. Related Work
Our visualization algorithms extend an actively growing

body of work in feature inversion. Torralba and Oliva, in
early work, described a simple iterative procedure to re-
cover images only given gist descriptors [17]. Weinzaepfel
et al. [22] were the first to reconstruct an image given its
keypoint SIFT descriptors [13]. Their approach obtains
compelling reconstructions using a nearest neighbor based
approach on a massive database. d’Angelo et al. [4] then de-
veloped an algorithm to reconstruct images given only LBP
features [2, 1]. Their method analytically solves for the in-
verse image and does not require a dataset.

While [22, 4, 17] do a good job at reconstructing im-
ages from SIFT, LBP, and gist features, our visualization
algorithms have several advantages. Firstly, while existing
methods are tailored for specific features, our visualization
algorithms we propose are feature independent. Since we
cast feature inversion as a machine learning problem, our
algorithms can be used to visualize any feature. In this pa-
per, we focus on features for object detection, the most pop-
ular of which is HOG. Secondly, our algorithms are fast:
our best algorithm can invert features in under a second on
a desktop computer, enabling interactive visualization. Fi-
nally, to our knowledge, this paper is the first to invert HOG.

Our visualizations enable analysis that complement a re-
cent line of papers that provide tools to diagnose object
recognition systems, which we briefly review here. Parikh
and Zitnick [18, 19] introduced a new paradigm for human
debugging of object detectors, an idea that we adopt in our
experiments. Hoiem et al. [10] performed a large study an-
alyzing the errors that object detectors make. Divvala et al.
[5] analyze part-based detectors to determine which com-
ponents of object detection systems have the most impact
on performance. Tatu et al. [20] explored the set of images
that generate identical HOG descriptors. Liu and Wang [12]
designed algorithms to highlight which image regions con-
tribute the most to a classifier’s confidence. Zhu et al. [24]
try to determine whether we have reached Bayes risk for
HOG. The tools in this paper enable an alternative mode to
analyze object detectors through visualizations. By putting
on ‘HOG glasses’ and visualizing the world according to
the features, we are able to gain a better understanding of
the failures and behaviors of our object detection systems.

3. Feature Visualization Algorithms

We pose the feature visualization problem as one of fea-
ture inversion, i.e. recovering the natural image that gen-
erated a feature vector. Let x 2 RD be an image and
y = �(x) be the corresponding HOG feature descriptor.
Since �(·) is a many-to-one function, no analytic inverse
exists. Hence, we seek an image x that, when we compute

2

Taken from: Vondrick, C., Khosla, A., Malisiewicz, T., & Torralba, A. (2013). Hoggles: Visualizing object detection features. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1-8).

http://arxiv.org/pdf/1502.00956.pdf

Review

• In classical Structure from Motion (SfM) computer vision
pipeline there are four steps,

1. Locate interest points.
2. Generate descriptors.
3. Matching descriptors.

Matching Descriptors

?
?
?

View 1 View 2

 {x}
“Descriptor at position x”

See BFMatcher class in OpenCV!!!

Matching Descriptors

View 1 View 2

⇣(i) = arg min
j

|| {x(1)
i }� {x(2)

j }||22

Variants other than nearest neighbor are possible!!!

Review

• In classical Structure from Motion (SfM) computer vision
pipeline there are four steps,

1. Locate interest points.
2. Generate descriptors.
3. Matching descriptors.
4. Robust fit.

arg min
�

⌘{x(1)
i � hom[x(2)

⇣(i);�]}

Review - RANSAC

Original images Initial matches Inliers from RANSAC

?

Today

• Review.

• Efficient Interest Point Detectors.

• Efficient Descriptors.

Efficient Interest Point Detection

• Most classical interest point detectors require the
employment of oriented edges.

�

�

“Horizontal”

“Vertical”

I

r
x

⇤ I

ry ⇤ I

r
x

ry

Problem - Gaussian Filtering is Slow

• Naively, filtering with Gaussians is relatively slow on most
modern architectures.

⇤

2

4
1, 0,�1
2, 0,�2
1, 0,�1

3

5

(Sobel)

• Does not lend itself well to parallelization as the variance of
the Gaussian filter increases (even with FFT).

• Computational cost increases dramatically as a function of
the size of the filter.

Gaussian Filter is Separable

>> h1D = fspecial(‘gaussian’,[25,1],3);

>> h2D = kron(h1D,h1D’);

In MATLAB,

Gaussian Filter is Separable

>> mesh(i)

In MATLAB,

>> h2D = imfilter(i, h1D);
>> h2D = imfilter(h2d, h1D’);
>> mesh(h2D)

More Problems - Scale
• However, even slower when you have to process things

across multiple scales.

⇤

2

4
1, 0,�1
2, 0,�2
1, 0,�1

3

5

⇤

2

4
1, 0,�1
2, 0,�2
1, 0,�1

3

5

⇤

2

4
1, 0,�1
2, 0,�2
1, 0,�1

3

5

Solution - Box Filters

• One strategy has been to approximate oriented filters with
box filters.

• Most notably the SURF (Speed Up Robust Feature)
descriptor of Bay et al. ECCV 2006.

Review
Integral images

ROC and cascade
Extensions and other applications

Integral image

We need to compute the box filter values many, many
times � must do it very fast!

Trick: use integral image for I(x, y):

II(x, y) =
�

x��x, y��y

I(x⇥, y⇥) (x, y)

�I(x⇥, y⇥)

Integral Image Trick

• We need to compute the box filter values many, many times
and we must do it very fast!

23

(Black)

Review
Integral images

ROC and cascade
Extensions and other applications

Integral image and box filters

Computing sum of pixels in a rectangular area:

f(A) =

II(A) � II(B)

� II(C) + II(D)

A 3-box filter takes 8 array
lookups!

A

B

C

D

Computing Integral Images

• Computing sum of pixels in a rectangular area:

24

(Black)

Review
Integral images

ROC and cascade
Extensions and other applications

Integral image and box filters

Computing sum of pixels in a rectangular area:

f(A) = II(A)

� II(B)

� II(C) + II(D)

A 3-box filter takes 8 array
lookups!

A

B

C

D

Computing Integral Images

• Computing sum of pixels in a rectangular area:

25

(Black)

Review
Integral images

ROC and cascade
Extensions and other applications

Integral image and box filters

Computing sum of pixels in a rectangular area:

f(A) = II(A) � II(B)

� II(C) + II(D)

A 3-box filter takes 8 array
lookups!

A

B

C

D

Computing Integral Images

• Computing sum of pixels in a rectangular area:

26

(Black)

Review
Integral images

ROC and cascade
Extensions and other applications

Integral image and box filters

Computing sum of pixels in a rectangular area:

f(A) = II(A) � II(B)

� II(C)

+ II(D)

A 3-box filter takes 8 array
lookups!

A

B

C

D

Computing Integral Images

• Computing sum of pixels in a rectangular area:

27

(Black)

Review
Integral images

ROC and cascade
Extensions and other applications

Integral image and box filters

Computing sum of pixels in a rectangular area:

f(A) = II(A) � II(B)

� II(C) + II(D)

A 3-box filter takes 8 array
lookups!

A

B

C

D

Computing Integral Images

• Computing sum of pixels in a rectangular area:

28

• A 3 box filter array takes only 8 lookups.

Review
Integral images

ROC and cascade
Extensions and other applications

Integral image and box filters

Computing sum of pixels in a rectangular area:

f(A) = II(A) � II(B)

� II(C) + II(D)

A 3-box filter takes 8 array
lookups!

A

B

C

D

(Black)

Fast Gaussian Filtering

• Iterative box filters can also be applied to obtain extremely
efficient Gaussian filtering,

>> mesh(b)

In MATLAB,

>> mesh(imfilter(imfilter(b,b),b))

SURF - Efficient Computation

• Positives:-
• Filters can be efficiently applied irrespective of size.
• Integral images well suited in particular to SIMD.
• Can take advantage of fixed integer arithmetic.

• Negatives:-
• Due to recursive nature cannot be easily parallelized.
• All pixels in local region need to be touched.
• Outputs floating/integer point metric of interest.

30

FAST

• Features from Accelerated Segment Test (FAST) - basis for
most modern day computationally efficient interest point
detectors.

• Proposed by Rosten et al. PAMI 2010.
• Operates by considering a circle of sixteen pixels around the

corner candidate. 13

15

11
10

16

14
13
12

p

21
3

4
5
6

7
89

Fig. 1

12 POINT SEGMENT TEST CORNER DETECTION IN AN IMAGE PATCH. THE HIGHLIGHTED SQUARES ARE THE PIXELS USED

IN THE CORNER DETECTION. THE PIXEL AT p IS THE CENTRE OF A CANDIDATE CORNER. THE ARC IS INDICATED BY THE

DASHED LINE PASSES THROUGH 12 CONTIGUOUS PIXELS WHICH ARE BRIGHTER THAN p BY MORE THAN THE THRESHOLD.

‘repeated’ if it is also detected nearby in the second. The repeatability is the ratio of repeated

features to detected features. They perform the tests on images of planar scenes so that the

relationship between point positions is a homography. Fiducial markers are projected onto the

planar scene using an overhead projector to allow accurate computation of the homography.

To measure the suitability of interest points for further processing, the information content of

descriptors of patches surrounding detected points is also computed.

III. HIGH-SPEED CORNER DETECTION

A. FAST: Features from Accelerated Segment Test

The segment test criterion operates by considering a circle of sixteen pixels around the corner

candidate p. The original detector [95], [96] classifies p as a corner if there exists a set of n

contiguous pixels in the circle which are all brighter than the intensity of the candidate pixel Ip

plus a threshold t, or all darker than Ip − t, as illustrated in Figure 1. n was originally chosen to

be twelve because it admits a high-speed test which can be used to exclude a very large number

of non-corners. The high-speed test examines pixels 1 and 9. If both of these are within t if

Ip, then p can not be a corner. If p can still be a corner, pixels 5 and 13 are examined. If p is

a corner then at least three of these must all be brighter than Ip + t or darker than Ip − t. If

neither of these is the case, then p cannot be a corner. The full segment test criterion can then

October 14, 2008 DRAFT

Why is it FAST?

• FAST relies heavily upon simple binary test,

• Does not have to touch all pixels before making a decision.
• Again, lends itself strongly to the employment of SIMD.
• Does not rely on integral images.
• Very good at finding possible corner candidates.
• Can still fire on edges, (can use Harris to remove false

positives).
• Is NOT multi-scale.

I(xp)� t > I(xn)

Today

• Review.

• Efficient Interest Point Detectors.

• Efficient Descriptors.

SURF Descriptor

• SURF also proposed a more efficient descriptor extraction
strategy using box filters,

• Rest of the descriptor quite similar to SIFT.

Reminder - SIFT Descriptor

1. Compute image gradients 2. Pool into local histograms
3. Concatenate histograms
4. Normalize histograms

BRIEF Descriptor

• Proposed by Calonder et al. ECCV 2010.
• Borrows idea that binary comparison is very fast on modern

chipset architectures,

1 : I(x + �1) > I(x + �2)
0 : otherwise

{ I(x,�1,�2) =

• Combine features together compactly,

 I(x) =
X

i

2i�1 I(x,�(i)
1 ,�(i)

2)

Why do Binary Features Work?

• Success of binary features says something about
perception itself.

• Absolute values of pixels do not matter.
• Makes sense as variable lighting source will effect the

gain and bias of pixels, but the local ordering should
remain relatively constant.

BRIEF Descriptor

• Do not need to “touch” all pixels, can choose pairs
randomly and sparsely,

{�1,�2}

Lecture Notes in Computer Science: BRIEF 5

Wall 1|2 Wall 1|3 Wall 1|4 Wall 1|5 Wall 1|6
0

10

20

30

40

50

60

70

80

90

100

R
ec

og
ni

tio
n

ra
te

no smo...
σ=0.65
σ=0.95
σ=1.25
σ=1.55
σ=1.85
σ=2.15
σ=2.45
σ=2.75
σ=3.05

Fig. 1. Each group of 10 bars represents the recognition rates in one specific stereo pair
for increasing levels of Gaussian smoothing. Especially for the hard-to-match pairs,
which are those on the right side of the plot, smoothing is essential in slowing down
the rate at which the recognition rate decreases.

Fig. 2. Different approaches to choosing the test locations. All except the righmost one
are selected by random sampling. Showing 128 tests in every image.

II) (X,Y) ∼ i.i.d. Gaussian(0, 1

25
S2): The tests are sampled from an isotropic

Gaussian distribution. Experimentally we found s

2
= 5

2
σ ⇔ σ2 = 1

25
S2 to

give best results in terms of recognition rate.

III) X ∼ i.i.d. Gaussian(0, 1

25
S2) , Y ∼ i.i.d. Gaussian(xi,

1

100
S2) : The sampling

involves two steps. The first location xi is sampled from a Gaussian centered
around the origin while the second location is sampled from another Gaussian
centered on xi. This forces the tests to be more local. Test locations outside
the patch are clamped to the edge of the patch. Again, experimentally we
found S

4
= 5

2
σ ⇔ σ2 = 1

100
S2 for the second Gaussian performing best.

IV) The (xi,yi) are randomly sampled from discrete locations of a coarse polar
grid introducing a spatial quantization.

BRIEF Descriptor

• Measuring distance between descriptors,

• e.g.,

d({xi}, {xj}) = Hamming distance

2

4
1
0
1

3

5 ,

2

4
1
0
0

3

5()d = 1

Why not use Euclidean distance?

Binary Descriptor Variants

• At the same time that BRIEF was proposed similar variants
were also proposed and have gained some popularity.
• BRISK - Binary Robust Invariant Scalable Keypoints - Leutenegger

2011.
• FREAK - Fast REtinA Keypoints - Alahi et al. 2012.

• Both use AGAST for keypoint detection an extension of
FAST proposed by Mair et al. 2010.

FREAK: Fast Retina Keypoint

Alexandre Alahi, Raphael Ortiz, Pierre Vandergheynst

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

A large number of vision applications rely on match-
ing keypoints across images. The last decade featured
an arms-race towards faster and more robust keypoints
and association algorithms: Scale Invariant Feature Trans-
form (SIFT)[17], Speed-up Robust Feature (SURF)[4], and
more recently Binary Robust Invariant Scalable Keypoints
(BRISK)[16] to name a few. These days, the deployment
of vision algorithms on smart phones and embedded de-
vices with low memory and computation complexity has
even upped the ante: the goal is to make descriptors faster
to compute, more compact while remaining robust to scale,
rotation and noise.

To best address the current requirements, we propose a
novel keypoint descriptor inspired by the human visual sys-
tem and more precisely the retina, coined Fast Retina Key-
point (FREAK). A cascade of binary strings is computed by
efficiently comparing image intensities over a retinal sam-
pling pattern. Our experiments show that FREAKs are in
general faster to compute with lower memory load and also
more robust than SIFT, SURF or BRISK. They are thus com-
petitive alternatives to existing keypoints in particular for
embedded applications.

1. Introduction
Visual correspondence, object matching, and many other

vision applications rely on representing images with sparse
number of keypoints. A real challenge is to efficiently de-
scribe keypoints, i.e. image patches, with stable, compact
and robust representations invariant to scale, rotation, affine
transformation, and noise. The past decades witnessed key
players to efficiently describe keypoints and match them.

The most popular descriptor is the histogram of oriented
gradient proposed by Lowe [17] to describe the Scale In-
variant Feature Transform (SIFT) keypoints. Most of the
efforts in the last years was to perform as good as SIFT [14]
with lower computational complexity. The Speeded up Ro-
bust Feature (SURF) by Bay et al. [4] is a good example.
It has similar matching rates with much faster performance

+
-

-
- +

+

- -
+

10110

Figure 1: llustration of our FREAK descriptor. A series of Difference of
Gaussians (DoG) over a retinal pattern are 1 bit quantized.

by describing keypoints with the responses of few Haar-like
filters. In general, Alahi et al. show in [2] that a grid of de-
scriptors, similar to SIFT and SURF, is better than a single
one to match an image region. Typically, a grid of covari-
ance matrices [30] attains high detection rate but remains
computationally too expensive for real-time applications.

The deployment of cameras on every phone coupled with
the growing computing power of mobile devices has en-
abled a new trend: vision algorithms need to run on mo-
bile devices with low computing power and memory ca-
pacity. Images obtained by smart phones can be used to
perform structure from motion [27], image retrieval [22],
or object recognition [15]. As a result, new algorithms
are needed where fixed-point operations and low memory
load are preferred. The Binary Robust Independent Ele-
mentary Feature (BRIEF) [5], the Oriented Fast and Ro-
tated BRIEF (ORB)[26], and the Binary Robust Invariant
Scalable Keypoints[16] (BRISK) are good examples. In the
next section, we will briefly present these descriptors. Their
stimulating contribution is that a binary string obtained by
simply comparing pairs of image intensities can efficiently
describe a keypoint, i.e. an image patch. However, several
problems remain: how to efficiently select the ideal pairs
within an image patch? How to match them? Interestingly,
such trend is inline with the models of the nature to describe
complex observations with simple rules. We propose to ad-
dress such unknowns by designing a descriptor inspired by
the Human Visual System, and more precisely the retina.
We propose the Fast Retina Keypoint (FREAK) as a fast,

1

ORB

• Rublee et al. ICCV 2011 proposed Oriented FAST and
Rotated BRIEF (ORB).

• Essentially combines FAST with BRIEF.
• Demonstrated that ORB is 2 orders of magnitude faster

than SIFT.
• Very useful for mobile devices.

ORB: an efficient alternative to SIFT or SURF

Ethan Rublee Vincent Rabaud Kurt Konolige Gary Bradski
Willow Garage, Menlo Park, California

{erublee}{vrabaud}{konolige}{bradski}@willowgarage.com

Abstract

Feature matching is at the base of many computer vi-
sion problems, such as object recognition or structure from
motion. Current methods rely on costly descriptors for de-
tection and matching. In this paper, we propose a very fast
binary descriptor based on BRIEF, called ORB, which is
rotation invariant and resistant to noise. We demonstrate
through experiments how ORB is at two orders of magni-
tude faster than SIFT, while performing as well in many
situations. The efficiency is tested on several real-world ap-
plications, including object detection and patch-tracking on
a smart phone.

1. Introduction
The SIFT keypoint detector and descriptor [17], al-

though over a decade old, have proven remarkably success-
ful in a number of applications using visual features, in-
cluding object recognition [17], image stitching [28], visual
mapping [25], etc. However, it imposes a large computa-
tional burden, especially for real-time systems such as vi-
sual odometry, or for low-power devices such as cellphones.
This has led to an intensive search for replacements with
lower computation cost; arguably the best of these is SURF
[2]. There has also been research aimed at speeding up the
computation of SIFT, most notably with GPU devices [26].
In this paper, we propose a computationally-efficient re-

placement to SIFT that has similar matching performance,
is less affected by image noise, and is capable of being used
for real-time performance. Our main motivation is to en-
hance many common image-matching applications, e.g., to
enable low-power devices without GPU acceleration to per-
form panorama stitching and patch tracking, and to reduce
the time for feature-based object detection on standard PCs.
Our descriptor performs as well as SIFT on these tasks (and
better than SURF), while being almost two orders of mag-
nitude faster.
Our proposed feature builds on the well-known FAST

keypoint detector [23] and the recently-developed BRIEF
descriptor [6]; for this reason we call it ORB (Oriented

Figure 1. Typical matching result using ORB on real-world im-
ages with viewpoint change. Green lines are valid matches; red
circles indicate unmatched points.

FAST and Rotated BRIEF). Both these techniques are at-
tractive because of their good performance and low cost.
In this paper, we address several limitations of these tech-
niques vis-a-vis SIFT, most notably the lack of rotational
invariance in BRIEF. Our main contributions are:

• The addition of a fast and accurate orientation compo-
nent to FAST.

• The efficient computation of oriented BRIEF features.
• Analysis of variance and correlation of oriented
BRIEF features.

• A learning method for de-correlating BRIEF features
under rotational invariance, leading to better perfor-
mance in nearest-neighbor applications.

To validate ORB, we perform experiments that test the
properties of ORB relative to SIFT and SURF, for both
raw matching ability, and performance in image-matching
applications. We also illustrate the efficiency of ORB
by implementing a patch-tracking application on a smart
phone. An additional benefit of ORB is that it is free from
the licensing restrictions of SIFT and SURF.

2. Related Work
Keypoints FAST and its variants [23, 24] are the method
of choice for finding keypoints in real-time systems that
match visual features, for example, Parallel Tracking and
Mapping [13]. It is efficient and finds reasonable corner
keypoints, although it must be augmented with pyramid

1

ORB

• ORB is patent free and available in OpenCV,

computed separately on five scales of the image, with a scal-
ing factor of

√
2. We used an area-based interpolation for

efficient decimation.
The ORB system breaks down into the following times

per typical frame of size 640x480. The code was executed
in a single thread running on an Intel i7 2.8 GHz processor:

ORB: Pyramid oFAST rBRIEF
Time (ms) 4.43 8.68 2.12

When computing ORB on a set of 2686 images at 5
scales, it was able to detect and compute over 2 × 106 fea-
tures in 42 seconds. Comparing to SIFT and SURF on the
same data, for the same number of features (roughly 1000),
and the same number of scales, we get the following times:

Detector ORB SURF SIFT
Time per frame (ms) 15.3 217.3 5228.7

These times were averaged over 24 640x480 images from
the Pascal dataset [9]. ORB is an order of magnitude faster
than SURF, and over two orders faster than SIFT.

6.2. Textured object detection
We apply rBRIEF to object recognition by implement-

ing a conventional object recognition pipeline similar to
[19]: we first detect oFAST features and rBRIEF de-
scriptors, match them to our database, and then perform
PROSAC [7] and EPnP [16] to have a pose estimate.
Our database contains 49 household objects, each taken

under 24 views with a 2D camera and a Kinect device from
Microsoft. The testing data consists of 2D images of sub-
sets of those same objects under different view points and
occlusions. To have a match, we require that descriptors are
matched but also that a pose can be computed. In the end,
our pipeline retrieves 61% of the objects as shown in Figure
12.
The algorithm handles a database of 1.2M descriptors

in 200MB and has timings comparable to what we showed
earlier (14 ms for detection and 17ms for LSH matching in
average). The pipeline could be sped up considerably by not
matching all the query descriptors to the training data but
our goal was only to show the feasibility of object detection
with ORB.

6.3. Embedded real-time feature tracking
Tracking on the phone involves matching the live frames

to a previously captured keyframe. Descriptors are stored
with the keyframe, which is assumed to contain a planar
surface that is well textured. We run ORB on each incom-
ing frame, and proced with a brute force descriptor match-
ing against the keyframe. The putative matches from the
descriptor distance are used in a PROSAC best fit homog-
raphyH .

Figure 12. Two images of our textured obejct recognition with
pose estimation. The blue features are the training features super-
imposed on the query image to indicate that the pose of the object
was found properly. Axes are also displayed for each object as
well as a pink label. Top image misses two objects; all are found
in the bottom one.

While there are real-time feature trackers that can run on
a cellphone [15], they usually operate on very small images
(e.g., 120x160) and with very few features. Systems com-
parable to ours [30] typically take over 1 second per image.
We were able to run ORB with 640 × 480 resolution at 7
Hz on a cellphone with a 1GHz ARM chip and 512 MB of
RAM. The OpenCV port for Android was used for the im-
plementation. These are benchmarks for about 400 points
per image:

ORB Matching H Fit
Time (ms) 66.6 72.8 20.9

7. Conclusion
In this paper, we have defined a new oriented descrip-

tor, ORB, and demonstrated its performance and efficiency
relative to other popular features. The investigation of vari-
ance under orientation was critical in constructing ORB
and de-correlating its components, in order to get good per-
formance in nearest-neighbor applications. We have also
contributed a BSD licensed implementation of ORB to the
community, via OpenCV 2.3.
One of the issues that we have not adequately addressed

ORB SLAMIEEE TRANSACTIONS ON ROBOTICS 3

drift appearing in monocular SLAM. From this work we take
the idea of loop closing with 7DoF pose graph optimization
and apply it to the Essential Graph defined in Section III-D

Strasdat et. al [7] used the front-end of PTAM, but per-
formed the tracking only in a local map retrieved from a covi-
sibility graph. They proposed a double window optimization
back-end that continuously performs BA in the inner window,
and pose graph in a limited-size outer window. However, loop
closing is only effective if the size of the outer window is
large enough to include the whole loop. In our system we
take advantage of the excellent ideas of using a local map
based on covisibility, and building the pose graph from the
covisibility graph, but apply them in a totally redesigned front-
end and back-end. Another difference is that, instead of using
specific features for loop detection (SURF), we perform the
place recognition on the same tracked and mapped features,
obtaining robust frame-rate relocalization and loop detection.

Pirker et. al [33] proposed CD-SLAM, a very complete
system including loop closing, relocalization, large scale oper-
ation and efforts to work on dynamic environments. However
map initialization is not mentioned. The lack of a public
implementation does not allow us to perform a comparison
of accuracy, robustness or large-scale capabilities.

The visual odometry of Song et al. [34] uses ORB features
for tracking and a temporal sliding window BA back-end. In
comparison our system is more general as they do not have
global relocalization, loop closing and do not reuse the map.
They are also using the known distance from the camera to
the ground to limit monocular scale drift.

Lim et. al [25], work published after we submitted our
preliminary version of this work [12], use also the same
features for tracking, mapping and loop detection. However
the choice of BRIEF limits the system to in-plane trajectories.
Their system only tracks points from the last keyframe so the
map is not reused if revisited (similar to visual odometry)
and has the problem of growing unbounded. We compare
qualitatively our results with this approach in section VIII-E.

The recent work of Engel et. al [10], known as LSD-
SLAM, is able to build large scale semi-dense maps, using
direct methods (i.e. optimization directly over image pixel
intensities) instead of bundle adjustment over features. Their
results are very impressive as the system is able to operate
in real time, without GPU acceleration, building a semi-dense
map, with more potential applications for robotics than the
sparse output generated by feature-based SLAM. Nevertheless
they still need features for loop detection and their camera
localization accuracy is significantly lower than in our system
and PTAM, as we show experimentally in Section VIII-B. This
surprising result is discussed in Section IX-B.

In a halfway between direct and feature-based methods is
the semi-direct visual odometry SVO of Forster et al. [22].
Without requiring to extract features in every frame they are
able to operate at high frame-rates obtaining impressive results
in quadracopters. However no loop detection is performed and
the current implementation is mainly thought for downward
looking cameras.

Finally we want to discuss about keyframe selection. All
visual SLAM works in the literature agree that running BA

Fig. 1. ORB-SLAM system overview, showing all the steps performed by
the tracking, local mapping and loop closing threads. The main components
of the place recognition module and the map are also shown.

with all the points and all the frames is not feasible. The
work of Strasdat et al. [31] showed that the most cost-
effective approach is to keep as much points as possible,
while keeping only non-redundant keyframes. The PTAM
approach was to insert keyframes very cautiously to avoid
an excessive growth of the computational complexity. This
restrictive keyframe insertion policy makes the tracking fail in
hard exploration conditions. Our survival of the fittest strategy
achieves unprecedented robustness in difficult scenarios by
inserting keyframes as quickly as possible, and removing later
the redundant ones, to avoid the extra cost.

III. SYSTEM OVERVIEW

A. Feature Choice
One of the main design ideas in our system is that the

same features used by the mapping and tracking are used
for place recognition to perform frame-rate relocalization and
loop detection. This makes our system efficient and avoids
the need to interpolate the depth of the recognition features
from near SLAM features as in previous works [6], [7]. We
requiere features that need for extraction much less than 33ms
per image, which excludes the popular SIFT (⇠ 300ms) [19],
SURF (⇠ 300ms) [18] or the recent A-KAZE (⇠ 100ms) [35].
To obtain general place recognition capabilities, we require
rotation invariance, which excludes BRIEF [16] and LDB [36].

We chose ORB [9], which are oriented multi-scale FAST
corners with a 256 bits descriptor associated. They are ex-
tremely fast to compute and match, while they have good
invariance to viewpoint. This allows to match them from wide
baselines, boosting the accuracy of BA. We already shown the
good performance of ORB for place recognition in [11]. While
our current implementation make use of ORB, the techniques
proposed are not restricted to these features.

B. Three Threads: Tracking, Local Mapping and Loop Closing
Our system, see an overview in Fig. 1, incorporates three

threads that run in parallel: tracking, local mapping and loop

Taken from: Mur-Artal, Raul, J. M. M. Montiel, and Juan D. Tardós. "Orb-slam: a versatile and accurate monocular slam system." IEEE Transactions on Robotics 31.5 (2015): 1147-1163.

http://arxiv.org/pdf/1502.00956.pdf

ORB SLAM

Taken from: Mur-Artal, Raul, J. M. M. Montiel, and Juan D. Tardós. "Orb-slam: a versatile and accurate monocular slam system." IEEE Transactions on Robotics 31.5 (2015): 1147-1163.

http://arxiv.org/pdf/1502.00956.pdf

More to read…

• E. Rublee et al. “ORB: an efficient alternative to SIFT or
SURF”, ICCV 2011.

• Calonder et al. “BRIEF: Binary Robust Independent
Elementary Features”, ECCV 2010.

• E. Rosten et al. “Faster and better: A machine learning
approach to corner detection” IEEE Trans. PAMI 2010.

• P. Kovesi “Fast Almost Gaussian Filtering” DICTA 2010.

ar
X

iv
:0

81
0.

24
34

v1
 [

cs
.C

V
]

14
 O

ct
 2

00
8

1

Faster and better: a machine learning approach

to corner detection

Edward Rosten, Reid Porter, and Tom Drummond

Edward Rosten and Reid Porter are with Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 87544. Email:

edrosten@lanl.gov, rporter@lanl.gov

Tom Drummond is with Cambridge University, Cambridge University Engineering Department, Trumpington Street, Cam-

bridge, UK, CB2 1PZ Email: twd20@cam.ac.uk

October 14, 2008 DRAFT

https://www.willowgarage.com/sites/default/files/orb_final.pdf
http://infoscience.epfl.ch/record/149242/files/top_1.pdf
http://arxiv.org/pdf/0810.2434
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5692551

